Loading…
Similarity measure between scenarios through fuzzy inference
The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in thi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 6 pp. vol.5 |
container_title | |
container_volume | 5 |
creator | de Carvalho, V.O. Morandin, O. Kato, E.R.R. |
description | The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic. |
doi_str_mv | 10.1109/ICSMC.2002.1176342 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1176342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176342</ieee_id><sourcerecordid>1176342</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMfYDf9A3rTP9CZN0mbFLyR4nQw8WK78G7k442LrJ0kLdL9egvu6nB4OA8cQu6BLgBo_bhqNu_NglHKpi4rLtgFyVgpZQFVWV6SGZWKcim4hCuSAa1YUTP2eUNmKX1PKypAZeRpE9pw0DH0Y96iTkPE3GD_i9jlyWI3kWPK-308Dl_73A-n05iHzmPEzuItufb6kPDunHOyXb5sm7di_fG6ap7XRVCqL1yFaCxQobTS4DwXppS2NKXjDLxlHOraUW89QmVq6bxCwYx1Cimg1pbPycO_NiDi7ieGVsdxdz7N_wDhIEu9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Similarity measure between scenarios through fuzzy inference</title><source>IEEE Xplore All Conference Series</source><creator>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</creator><creatorcontrib>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</creatorcontrib><description>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780374371</identifier><identifier>ISBN: 9780780374379</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2002.1176342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Automation ; Computer science ; Computer simulation ; Decision making ; Discrete event simulation ; Feedback ; Fuzzy logic ; Laboratories ; Production</subject><ispartof>IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.6 pp. vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Carvalho, V.O.</creatorcontrib><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E.R.R.</creatorcontrib><title>Similarity measure between scenarios through fuzzy inference</title><title>IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Discrete event simulation</subject><subject>Feedback</subject><subject>Fuzzy logic</subject><subject>Laboratories</subject><subject>Production</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780374371</isbn><isbn>9780780374379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhYMfYDf9A3rTP9CZN0mbFLyR4nQw8WK78G7k442LrJ0kLdL9egvu6nB4OA8cQu6BLgBo_bhqNu_NglHKpi4rLtgFyVgpZQFVWV6SGZWKcim4hCuSAa1YUTP2eUNmKX1PKypAZeRpE9pw0DH0Y96iTkPE3GD_i9jlyWI3kWPK-308Dl_73A-n05iHzmPEzuItufb6kPDunHOyXb5sm7di_fG6ap7XRVCqL1yFaCxQobTS4DwXppS2NKXjDLxlHOraUW89QmVq6bxCwYx1Cimg1pbPycO_NiDi7ieGVsdxdz7N_wDhIEu9</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>de Carvalho, V.O.</creator><creator>Morandin, O.</creator><creator>Kato, E.R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Similarity measure between scenarios through fuzzy inference</title><author>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Discrete event simulation</topic><topic>Feedback</topic><topic>Fuzzy logic</topic><topic>Laboratories</topic><topic>Production</topic><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho, V.O.</creatorcontrib><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E.R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Carvalho, V.O.</au><au>Morandin, O.</au><au>Kato, E.R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Similarity measure between scenarios through fuzzy inference</atitle><btitle>IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2002</date><risdate>2002</risdate><volume>5</volume><spage>6 pp. vol.5</spage><pages>6 pp. vol.5-</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780374371</isbn><isbn>9780780374379</isbn><abstract>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2002.1176342</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.6 pp. vol.5 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_1176342 |
source | IEEE Xplore All Conference Series |
subjects | Artificial intelligence Automation Computer science Computer simulation Decision making Discrete event simulation Feedback Fuzzy logic Laboratories Production |
title | Similarity measure between scenarios through fuzzy inference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Similarity%20measure%20between%20scenarios%20through%20fuzzy%20inference&rft.btitle=IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=de%20Carvalho,%20V.O.&rft.date=2002&rft.volume=5&rft.spage=6%20pp.%20vol.5&rft.pages=6%20pp.%20vol.5-&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780374371&rft.isbn_list=9780780374379&rft_id=info:doi/10.1109/ICSMC.2002.1176342&rft_dat=%3Cieee_CHZPO%3E1176342%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1176342&rfr_iscdi=true |