Loading…

Similarity measure between scenarios through fuzzy inference

The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in thi...

Full description

Saved in:
Bibliographic Details
Main Authors: de Carvalho, V.O., Morandin, O., Kato, E.R.R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 6 pp. vol.5
container_title
container_volume 5
creator de Carvalho, V.O.
Morandin, O.
Kato, E.R.R.
description The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.
doi_str_mv 10.1109/ICSMC.2002.1176342
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1176342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176342</ieee_id><sourcerecordid>1176342</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMfYDf9A3rTP9CZN0mbFLyR4nQw8WK78G7k442LrJ0kLdL9egvu6nB4OA8cQu6BLgBo_bhqNu_NglHKpi4rLtgFyVgpZQFVWV6SGZWKcim4hCuSAa1YUTP2eUNmKX1PKypAZeRpE9pw0DH0Y96iTkPE3GD_i9jlyWI3kWPK-308Dl_73A-n05iHzmPEzuItufb6kPDunHOyXb5sm7di_fG6ap7XRVCqL1yFaCxQobTS4DwXppS2NKXjDLxlHOraUW89QmVq6bxCwYx1Cimg1pbPycO_NiDi7ieGVsdxdz7N_wDhIEu9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Similarity measure between scenarios through fuzzy inference</title><source>IEEE Xplore All Conference Series</source><creator>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</creator><creatorcontrib>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</creatorcontrib><description>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780374371</identifier><identifier>ISBN: 9780780374379</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2002.1176342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Automation ; Computer science ; Computer simulation ; Decision making ; Discrete event simulation ; Feedback ; Fuzzy logic ; Laboratories ; Production</subject><ispartof>IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.6 pp. vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Carvalho, V.O.</creatorcontrib><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E.R.R.</creatorcontrib><title>Similarity measure between scenarios through fuzzy inference</title><title>IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computer science</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Discrete event simulation</subject><subject>Feedback</subject><subject>Fuzzy logic</subject><subject>Laboratories</subject><subject>Production</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780374371</isbn><isbn>9780780374379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhYMfYDf9A3rTP9CZN0mbFLyR4nQw8WK78G7k442LrJ0kLdL9egvu6nB4OA8cQu6BLgBo_bhqNu_NglHKpi4rLtgFyVgpZQFVWV6SGZWKcim4hCuSAa1YUTP2eUNmKX1PKypAZeRpE9pw0DH0Y96iTkPE3GD_i9jlyWI3kWPK-308Dl_73A-n05iHzmPEzuItufb6kPDunHOyXb5sm7di_fG6ap7XRVCqL1yFaCxQobTS4DwXppS2NKXjDLxlHOraUW89QmVq6bxCwYx1Cimg1pbPycO_NiDi7ieGVsdxdz7N_wDhIEu9</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>de Carvalho, V.O.</creator><creator>Morandin, O.</creator><creator>Kato, E.R.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Similarity measure between scenarios through fuzzy inference</title><author>de Carvalho, V.O. ; Morandin, O. ; Kato, E.R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computer science</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Discrete event simulation</topic><topic>Feedback</topic><topic>Fuzzy logic</topic><topic>Laboratories</topic><topic>Production</topic><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho, V.O.</creatorcontrib><creatorcontrib>Morandin, O.</creatorcontrib><creatorcontrib>Kato, E.R.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Carvalho, V.O.</au><au>Morandin, O.</au><au>Kato, E.R.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Similarity measure between scenarios through fuzzy inference</atitle><btitle>IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2002</date><risdate>2002</risdate><volume>5</volume><spage>6 pp. vol.5</spage><pages>6 pp. vol.5-</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780374371</isbn><isbn>9780780374379</isbn><abstract>The simulation technique has been used to solve many problems that occur in the production process. Whenever an event occurs many alternatives (scenarios) can be generated in order to solve the problem. However, as much as the number of scenarios to be simulated becomes higher, the time spent in this process raises, implicating in a difficult task to find a good solution. Hence, it is necessary to reduce this number of scenarios. In this context, it is proposed an approach to reduce the number of scenarios to be simulated, grouping similar scenarios in sets, through the use of fuzzy logic.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2002.1176342</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.6 pp. vol.5
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1176342
source IEEE Xplore All Conference Series
subjects Artificial intelligence
Automation
Computer science
Computer simulation
Decision making
Discrete event simulation
Feedback
Fuzzy logic
Laboratories
Production
title Similarity measure between scenarios through fuzzy inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Similarity%20measure%20between%20scenarios%20through%20fuzzy%20inference&rft.btitle=IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=de%20Carvalho,%20V.O.&rft.date=2002&rft.volume=5&rft.spage=6%20pp.%20vol.5&rft.pages=6%20pp.%20vol.5-&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780374371&rft.isbn_list=9780780374379&rft_id=info:doi/10.1109/ICSMC.2002.1176342&rft_dat=%3Cieee_CHZPO%3E1176342%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i88t-d6eebc1048a8a1df34b57c5b5d321fc23199d0fcfe16b97df8e42bcd8e01eaac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1176342&rfr_iscdi=true