Loading…

An internal model control strategy using artificial neural networks for a class of nonlinear systems

The use of an artificial neural network (ANN) in model based control: the internal model control (IMC), both as process model and as a controller is considered in this paper. The neural network is trained with observed input-output data from the system to represent its inverse dynamics. The resultin...

Full description

Saved in:
Bibliographic Details
Main Authors: Bel Hadj Ali, S., El Abed-Abdelkrim, A., Benrejeb, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 4 pp. vol.5
container_title
container_volume 5
creator Bel Hadj Ali, S.
El Abed-Abdelkrim, A.
Benrejeb, M.
description The use of an artificial neural network (ANN) in model based control: the internal model control (IMC), both as process model and as a controller is considered in this paper. The neural network is trained with observed input-output data from the system to represent its inverse dynamics. The resulting inverse model neural network can then be used as a controller, typically in a feedforward fashion. The proposed procedure is presented to design a control law for a class of nonlinear systems with separable nonlinearity. An IMC with a neural network controller, in which the linear part of the plant and its inverse are replaced by neural networks, cancels the effects of the nonlinear dynamics and measured disturbances, with satisfying performance. The linear conjecture is so verified for the considered nonlinear system class. Simulation results, for different slopes k of the nonlinearity, show control performance and give limitations of proposed strategy application, beyond which, the neural controller yields unstable behaviour.
doi_str_mv 10.1109/ICSMC.2002.1176373
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1176373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176373</ieee_id><sourcerecordid>1176373</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-ef41032b8432648bce151bc1dd6a0c4bc6a6099a47f1083628811917793e548a3</originalsourceid><addsrcrecordid>eNotkM1OAyEUhYk_iW31BXTDC0zlAgPMsplobVLjwi7cNQxzp0GnYIDG9O1ttKsvJznfWRxC7oHNAVjzuGrfX9s5Z4yfslZCiwsy4bXWFai6viRTpg0TWgoNV2QCTPGq4fzjhkxz_jxZTIKZkH4RqA8FU7Aj3cceR-piKCmONJdkC-6O9JB92FGbih-886dewEP6Q_mJ6SvTISZqqRttzjQONMQw-oA20XzMBff5llwPdsx4d-aMbJ6fNu1LtX5brtrFuvLGlAoHCUzwzkjBlTSdQ6ihc9D3yjInO6esYk1jpR6AGaG4MQANaN0IrKWxYkYe_mc9Im6_k9_bdNyezxG_BOZYBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An internal model control strategy using artificial neural networks for a class of nonlinear systems</title><source>IEEE Xplore All Conference Series</source><creator>Bel Hadj Ali, S. ; El Abed-Abdelkrim, A. ; Benrejeb, M.</creator><creatorcontrib>Bel Hadj Ali, S. ; El Abed-Abdelkrim, A. ; Benrejeb, M.</creatorcontrib><description>The use of an artificial neural network (ANN) in model based control: the internal model control (IMC), both as process model and as a controller is considered in this paper. The neural network is trained with observed input-output data from the system to represent its inverse dynamics. The resulting inverse model neural network can then be used as a controller, typically in a feedforward fashion. The proposed procedure is presented to design a control law for a class of nonlinear systems with separable nonlinearity. An IMC with a neural network controller, in which the linear part of the plant and its inverse are replaced by neural networks, cancels the effects of the nonlinear dynamics and measured disturbances, with satisfying performance. The linear conjecture is so verified for the considered nonlinear system class. Simulation results, for different slopes k of the nonlinearity, show control performance and give limitations of proposed strategy application, beyond which, the neural controller yields unstable behaviour.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780374371</identifier><identifier>ISBN: 9780780374379</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2002.1176373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Automatic control ; Control systems ; Inverse problems ; Neural networks ; Nonlinear control systems ; Nonlinear dynamical systems ; Nonlinear systems ; Open loop systems ; Power system modeling</subject><ispartof>IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.4 pp. vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bel Hadj Ali, S.</creatorcontrib><creatorcontrib>El Abed-Abdelkrim, A.</creatorcontrib><creatorcontrib>Benrejeb, M.</creatorcontrib><title>An internal model control strategy using artificial neural networks for a class of nonlinear systems</title><title>IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>The use of an artificial neural network (ANN) in model based control: the internal model control (IMC), both as process model and as a controller is considered in this paper. The neural network is trained with observed input-output data from the system to represent its inverse dynamics. The resulting inverse model neural network can then be used as a controller, typically in a feedforward fashion. The proposed procedure is presented to design a control law for a class of nonlinear systems with separable nonlinearity. An IMC with a neural network controller, in which the linear part of the plant and its inverse are replaced by neural networks, cancels the effects of the nonlinear dynamics and measured disturbances, with satisfying performance. The linear conjecture is so verified for the considered nonlinear system class. Simulation results, for different slopes k of the nonlinearity, show control performance and give limitations of proposed strategy application, beyond which, the neural controller yields unstable behaviour.</description><subject>Artificial neural networks</subject><subject>Automatic control</subject><subject>Control systems</subject><subject>Inverse problems</subject><subject>Neural networks</subject><subject>Nonlinear control systems</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Open loop systems</subject><subject>Power system modeling</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780374371</isbn><isbn>9780780374379</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OAyEUhYk_iW31BXTDC0zlAgPMsplobVLjwi7cNQxzp0GnYIDG9O1ttKsvJznfWRxC7oHNAVjzuGrfX9s5Z4yfslZCiwsy4bXWFai6viRTpg0TWgoNV2QCTPGq4fzjhkxz_jxZTIKZkH4RqA8FU7Aj3cceR-piKCmONJdkC-6O9JB92FGbih-886dewEP6Q_mJ6SvTISZqqRttzjQONMQw-oA20XzMBff5llwPdsx4d-aMbJ6fNu1LtX5brtrFuvLGlAoHCUzwzkjBlTSdQ6ihc9D3yjInO6esYk1jpR6AGaG4MQANaN0IrKWxYkYe_mc9Im6_k9_bdNyezxG_BOZYBA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bel Hadj Ali, S.</creator><creator>El Abed-Abdelkrim, A.</creator><creator>Benrejeb, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>An internal model control strategy using artificial neural networks for a class of nonlinear systems</title><author>Bel Hadj Ali, S. ; El Abed-Abdelkrim, A. ; Benrejeb, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-ef41032b8432648bce151bc1dd6a0c4bc6a6099a47f1083628811917793e548a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Artificial neural networks</topic><topic>Automatic control</topic><topic>Control systems</topic><topic>Inverse problems</topic><topic>Neural networks</topic><topic>Nonlinear control systems</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Open loop systems</topic><topic>Power system modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Bel Hadj Ali, S.</creatorcontrib><creatorcontrib>El Abed-Abdelkrim, A.</creatorcontrib><creatorcontrib>Benrejeb, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bel Hadj Ali, S.</au><au>El Abed-Abdelkrim, A.</au><au>Benrejeb, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An internal model control strategy using artificial neural networks for a class of nonlinear systems</atitle><btitle>IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2002</date><risdate>2002</risdate><volume>5</volume><spage>4 pp. vol.5</spage><pages>4 pp. vol.5-</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780374371</isbn><isbn>9780780374379</isbn><abstract>The use of an artificial neural network (ANN) in model based control: the internal model control (IMC), both as process model and as a controller is considered in this paper. The neural network is trained with observed input-output data from the system to represent its inverse dynamics. The resulting inverse model neural network can then be used as a controller, typically in a feedforward fashion. The proposed procedure is presented to design a control law for a class of nonlinear systems with separable nonlinearity. An IMC with a neural network controller, in which the linear part of the plant and its inverse are replaced by neural networks, cancels the effects of the nonlinear dynamics and measured disturbances, with satisfying performance. The linear conjecture is so verified for the considered nonlinear system class. Simulation results, for different slopes k of the nonlinearity, show control performance and give limitations of proposed strategy application, beyond which, the neural controller yields unstable behaviour.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2002.1176373</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof IEEE International Conference on Systems, Man and Cybernetics, 2002, Vol.5, p.4 pp. vol.5
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_1176373
source IEEE Xplore All Conference Series
subjects Artificial neural networks
Automatic control
Control systems
Inverse problems
Neural networks
Nonlinear control systems
Nonlinear dynamical systems
Nonlinear systems
Open loop systems
Power system modeling
title An internal model control strategy using artificial neural networks for a class of nonlinear systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20internal%20model%20control%20strategy%20using%20artificial%20neural%20networks%20for%20a%20class%20of%20nonlinear%20systems&rft.btitle=IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Bel%20Hadj%20Ali,%20S.&rft.date=2002&rft.volume=5&rft.spage=4%20pp.%20vol.5&rft.pages=4%20pp.%20vol.5-&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780374371&rft.isbn_list=9780780374379&rft_id=info:doi/10.1109/ICSMC.2002.1176373&rft_dat=%3Cieee_CHZPO%3E1176373%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i88t-ef41032b8432648bce151bc1dd6a0c4bc6a6099a47f1083628811917793e548a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1176373&rfr_iscdi=true