Loading…

Artificial immune theory based network intrusion detection system and the algorithms design

A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiang-Rong Yang, Jun-Yi Shen, Rui Wang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 77 vol.1
container_issue
container_start_page 73
container_title
container_volume 1
creator Xiang-Rong Yang
Jun-Yi Shen
Rui Wang
description A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.
doi_str_mv 10.1109/ICMLC.2002.1176712
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1176712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176712</ieee_id><sourcerecordid>1176712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103</originalsourceid><addsrcrecordid>eNotUMtqwzAQFJRCS-ofaC_6Aad6euVjMH0EHHrJrYcg2-tErS0XSaH47-vQDAMzA7N7GEIeOVtzzsrnbbWrq7VgTCwZCuDihmQlGLZQgmamuCNZjF9sgVJaSn1PPjchud61zg7UjePZI00nnMJMGxuxox7T7xS-qfMpnKObPO0wYZsuLs4x4Uit7y431A7HKbh0GuPSie7oH8htb4eI2VVXZP_6sq_e8_rjbVtt6txxkCnvuS5UJ0BIAFwsyKLRZcelsEIpsEUPkqNlrW1KgNJIZUoF2ljTcsaZXJGn_7cOEQ8_wY02zIfrAvIPYFpRqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</creator><creatorcontrib>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</creatorcontrib><description>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1176712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biology computing ; Computer science ; Computer security ; Condition monitoring ; Detectors ; Encoding ; Humans ; Immune system ; Intrusion detection</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.1, p.73-77 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang-Rong Yang</creatorcontrib><creatorcontrib>Jun-Yi Shen</creatorcontrib><creatorcontrib>Rui Wang</creatorcontrib><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</description><subject>Algorithm design and analysis</subject><subject>Biology computing</subject><subject>Computer science</subject><subject>Computer security</subject><subject>Condition monitoring</subject><subject>Detectors</subject><subject>Encoding</subject><subject>Humans</subject><subject>Immune system</subject><subject>Intrusion detection</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMtqwzAQFJRCS-ofaC_6Aad6euVjMH0EHHrJrYcg2-tErS0XSaH47-vQDAMzA7N7GEIeOVtzzsrnbbWrq7VgTCwZCuDihmQlGLZQgmamuCNZjF9sgVJaSn1PPjchud61zg7UjePZI00nnMJMGxuxox7T7xS-qfMpnKObPO0wYZsuLs4x4Uit7y431A7HKbh0GuPSie7oH8htb4eI2VVXZP_6sq_e8_rjbVtt6txxkCnvuS5UJ0BIAFwsyKLRZcelsEIpsEUPkqNlrW1KgNJIZUoF2ljTcsaZXJGn_7cOEQ8_wY02zIfrAvIPYFpRqg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Xiang-Rong Yang</creator><creator>Jun-Yi Shen</creator><creator>Rui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><author>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Biology computing</topic><topic>Computer science</topic><topic>Computer security</topic><topic>Condition monitoring</topic><topic>Detectors</topic><topic>Encoding</topic><topic>Humans</topic><topic>Immune system</topic><topic>Intrusion detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang-Rong Yang</creatorcontrib><creatorcontrib>Jun-Yi Shen</creatorcontrib><creatorcontrib>Rui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang-Rong Yang</au><au>Jun-Yi Shen</au><au>Rui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial immune theory based network intrusion detection system and the algorithms design</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>73</spage><epage>77 vol.1</epage><pages>73-77 vol.1</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1176712</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780375086
ispartof Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.1, p.73-77 vol.1
issn
language eng
recordid cdi_ieee_primary_1176712
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biology computing
Computer science
Computer security
Condition monitoring
Detectors
Encoding
Humans
Immune system
Intrusion detection
title Artificial immune theory based network intrusion detection system and the algorithms design
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20immune%20theory%20based%20network%20intrusion%20detection%20system%20and%20the%20algorithms%20design&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Xiang-Rong%20Yang&rft.date=2002&rft.volume=1&rft.spage=73&rft.epage=77%20vol.1&rft.pages=73-77%20vol.1&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1176712&rft_dat=%3Cieee_6IE%3E1176712%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1176712&rfr_iscdi=true