Loading…
Artificial immune theory based network intrusion detection system and the algorithms design
A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 77 vol.1 |
container_issue | |
container_start_page | 73 |
container_title | |
container_volume | 1 |
creator | Xiang-Rong Yang Jun-Yi Shen Rui Wang |
description | A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving. |
doi_str_mv | 10.1109/ICMLC.2002.1176712 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1176712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176712</ieee_id><sourcerecordid>1176712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103</originalsourceid><addsrcrecordid>eNotUMtqwzAQFJRCS-ofaC_6Aad6euVjMH0EHHrJrYcg2-tErS0XSaH47-vQDAMzA7N7GEIeOVtzzsrnbbWrq7VgTCwZCuDihmQlGLZQgmamuCNZjF9sgVJaSn1PPjchud61zg7UjePZI00nnMJMGxuxox7T7xS-qfMpnKObPO0wYZsuLs4x4Uit7y431A7HKbh0GuPSie7oH8htb4eI2VVXZP_6sq_e8_rjbVtt6txxkCnvuS5UJ0BIAFwsyKLRZcelsEIpsEUPkqNlrW1KgNJIZUoF2ljTcsaZXJGn_7cOEQ8_wY02zIfrAvIPYFpRqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</creator><creatorcontrib>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</creatorcontrib><description>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</description><identifier>ISBN: 9780780375086</identifier><identifier>ISBN: 0780375084</identifier><identifier>DOI: 10.1109/ICMLC.2002.1176712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biology computing ; Computer science ; Computer security ; Condition monitoring ; Detectors ; Encoding ; Humans ; Immune system ; Intrusion detection</subject><ispartof>Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.1, p.73-77 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1176712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiang-Rong Yang</creatorcontrib><creatorcontrib>Jun-Yi Shen</creatorcontrib><creatorcontrib>Rui Wang</creatorcontrib><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><title>Proceedings. International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</description><subject>Algorithm design and analysis</subject><subject>Biology computing</subject><subject>Computer science</subject><subject>Computer security</subject><subject>Condition monitoring</subject><subject>Detectors</subject><subject>Encoding</subject><subject>Humans</subject><subject>Immune system</subject><subject>Intrusion detection</subject><isbn>9780780375086</isbn><isbn>0780375084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMtqwzAQFJRCS-ofaC_6Aad6euVjMH0EHHrJrYcg2-tErS0XSaH47-vQDAMzA7N7GEIeOVtzzsrnbbWrq7VgTCwZCuDihmQlGLZQgmamuCNZjF9sgVJaSn1PPjchud61zg7UjePZI00nnMJMGxuxox7T7xS-qfMpnKObPO0wYZsuLs4x4Uit7y431A7HKbh0GuPSie7oH8htb4eI2VVXZP_6sq_e8_rjbVtt6txxkCnvuS5UJ0BIAFwsyKLRZcelsEIpsEUPkqNlrW1KgNJIZUoF2ljTcsaZXJGn_7cOEQ8_wY02zIfrAvIPYFpRqg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Xiang-Rong Yang</creator><creator>Jun-Yi Shen</creator><creator>Rui Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Artificial immune theory based network intrusion detection system and the algorithms design</title><author>Xiang-Rong Yang ; Jun-Yi Shen ; Rui Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Biology computing</topic><topic>Computer science</topic><topic>Computer security</topic><topic>Condition monitoring</topic><topic>Detectors</topic><topic>Encoding</topic><topic>Humans</topic><topic>Immune system</topic><topic>Intrusion detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiang-Rong Yang</creatorcontrib><creatorcontrib>Jun-Yi Shen</creatorcontrib><creatorcontrib>Rui Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang-Rong Yang</au><au>Jun-Yi Shen</au><au>Rui Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Artificial immune theory based network intrusion detection system and the algorithms design</atitle><btitle>Proceedings. International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>73</spage><epage>77 vol.1</epage><pages>73-77 vol.1</pages><isbn>9780780375086</isbn><isbn>0780375084</isbn><abstract>A network intrusion detection model based on artificial immune theory is proposed in this paper. In this model, self patterns and non-self patterns are built upon frequent behaviors sequences, then a simple but efficient algorithm for encoding patterns is proposed. Based on the result of encoding, another algorithm for creating detectors is presented, which integrates a negative selection with the clonal selection. The algorithm performance is analyzed, which shows that this method can shrink each generation scale greatly and create a good niche for patterns evolving.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2002.1176712</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780375086 |
ispartof | Proceedings. International Conference on Machine Learning and Cybernetics, 2002, Vol.1, p.73-77 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1176712 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Biology computing Computer science Computer security Condition monitoring Detectors Encoding Humans Immune system Intrusion detection |
title | Artificial immune theory based network intrusion detection system and the algorithms design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Artificial%20immune%20theory%20based%20network%20intrusion%20detection%20system%20and%20the%20algorithms%20design&rft.btitle=Proceedings.%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Xiang-Rong%20Yang&rft.date=2002&rft.volume=1&rft.spage=73&rft.epage=77%20vol.1&rft.pages=73-77%20vol.1&rft.isbn=9780780375086&rft.isbn_list=0780375084&rft_id=info:doi/10.1109/ICMLC.2002.1176712&rft_dat=%3Cieee_6IE%3E1176712%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-f1564d272377e564736b59d132a2447a6f731ea0cab9779834894758a8c10103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1176712&rfr_iscdi=true |