Loading…

A prediction-based neural network scheme for lossless data compression

This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on human-machine systems 2002-11, Vol.32 (4), p.358-365
Main Author: Logeswaran, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03
cites cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03
container_end_page 365
container_issue 4
container_start_page 358
container_title IEEE transactions on human-machine systems
container_volume 32
creator Logeswaran, R.
description This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.
doi_str_mv 10.1109/TSMCC.2002.806744
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1176885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176885</ieee_id><sourcerecordid>907970221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</originalsourceid><addsrcrecordid>eNqFkdFLwzAQxosoOKd_gPhSBPWp8y69JunjGE6FiQ_O55BmKXZ27UxaxP_ezA0GPigc3EF-3x35vig6RxghQn47f3maTEYMgI0kcEF0EA0wy2TCiNhhmCGnhOdCHEcn3i8BkChPB9F0HK-dXVSmq9omKbS3i7ixvdN1aN1n695jb97sysZl6-K69b623scL3enYtKug9T4oT6OjUtfenu36MHqd3s0nD8ns-f5xMp4lhpC6hDOSHNFSGYoZA1lWMJHbtEQsiqIEQsGBNC2EyAojNXEsU9ASJJLWkA6jm-3etWs_eus7taq8sXWtG9v2XuUgcgGMYSCv_yRZDpAG_H9QBqMYbm5f_gKXbe-a8F0lJZFgTKQBwi1kXPDK2VKtXbXS7kshqE1S6icptUlKbZMKmqvdYu2NrkunG1P5vZA45wxZ4C62XGWt3T8Hy6TM0m8P_pqR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884472273</pqid></control><display><type>article</type><title>A prediction-based neural network scheme for lossless data compression</title><source>IEEE Xplore (Online service)</source><creator>Logeswaran, R.</creator><creatorcontrib>Logeswaran, R.</creatorcontrib><description>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</description><identifier>ISSN: 1094-6977</identifier><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 1558-2442</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/TSMCC.2002.806744</identifier><identifier>CODEN: ITCRFH</identifier><language>eng</language><publisher>New-York, NY: IEEE</publisher><subject>Applied sciences ; Artificial neural networks ; Data compression ; Exact sciences and technology ; Feedforward neural networks ; Finite impulse response filter ; Hardware ; Image coding ; Miscellaneous ; Neural networks ; Operation, maintenance, reliability of teleprocessing networks ; Propagation losses ; Recurrent neural networks ; Redundancy ; Studies ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn</subject><ispartof>IEEE transactions on human-machine systems, 2002-11, Vol.32 (4), p.358-365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</citedby><cites>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14666212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Logeswaran, R.</creatorcontrib><title>A prediction-based neural network scheme for lossless data compression</title><title>IEEE transactions on human-machine systems</title><addtitle>TSMCC</addtitle><description>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</description><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Data compression</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Finite impulse response filter</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>Operation, maintenance, reliability of teleprocessing networks</subject><subject>Propagation losses</subject><subject>Recurrent neural networks</subject><subject>Redundancy</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><issn>1094-6977</issn><issn>2168-2291</issn><issn>1558-2442</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkdFLwzAQxosoOKd_gPhSBPWp8y69JunjGE6FiQ_O55BmKXZ27UxaxP_ezA0GPigc3EF-3x35vig6RxghQn47f3maTEYMgI0kcEF0EA0wy2TCiNhhmCGnhOdCHEcn3i8BkChPB9F0HK-dXVSmq9omKbS3i7ixvdN1aN1n695jb97sysZl6-K69b623scL3enYtKug9T4oT6OjUtfenu36MHqd3s0nD8ns-f5xMp4lhpC6hDOSHNFSGYoZA1lWMJHbtEQsiqIEQsGBNC2EyAojNXEsU9ASJJLWkA6jm-3etWs_eus7taq8sXWtG9v2XuUgcgGMYSCv_yRZDpAG_H9QBqMYbm5f_gKXbe-a8F0lJZFgTKQBwi1kXPDK2VKtXbXS7kshqE1S6icptUlKbZMKmqvdYu2NrkunG1P5vZA45wxZ4C62XGWt3T8Hy6TM0m8P_pqR</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Logeswaran, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20021101</creationdate><title>A prediction-based neural network scheme for lossless data compression</title><author>Logeswaran, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Data compression</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Finite impulse response filter</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>Operation, maintenance, reliability of teleprocessing networks</topic><topic>Propagation losses</topic><topic>Recurrent neural networks</topic><topic>Redundancy</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswaran, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswaran, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction-based neural network scheme for lossless data compression</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>TSMCC</stitle><date>2002-11-01</date><risdate>2002</risdate><volume>32</volume><issue>4</issue><spage>358</spage><epage>365</epage><pages>358-365</pages><issn>1094-6977</issn><issn>2168-2291</issn><eissn>1558-2442</eissn><eissn>2168-2305</eissn><coden>ITCRFH</coden><abstract>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</abstract><cop>New-York, NY</cop><pub>IEEE</pub><doi>10.1109/TSMCC.2002.806744</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1094-6977
ispartof IEEE transactions on human-machine systems, 2002-11, Vol.32 (4), p.358-365
issn 1094-6977
2168-2291
1558-2442
2168-2305
language eng
recordid cdi_ieee_primary_1176885
source IEEE Xplore (Online service)
subjects Applied sciences
Artificial neural networks
Data compression
Exact sciences and technology
Feedforward neural networks
Finite impulse response filter
Hardware
Image coding
Miscellaneous
Neural networks
Operation, maintenance, reliability of teleprocessing networks
Propagation losses
Recurrent neural networks
Redundancy
Studies
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
title A prediction-based neural network scheme for lossless data compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction-based%20neural%20network%20scheme%20for%20lossless%20data%20compression&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Logeswaran,%20R.&rft.date=2002-11-01&rft.volume=32&rft.issue=4&rft.spage=358&rft.epage=365&rft.pages=358-365&rft.issn=1094-6977&rft.eissn=1558-2442&rft.coden=ITCRFH&rft_id=info:doi/10.1109/TSMCC.2002.806744&rft_dat=%3Cproquest_ieee_%3E907970221%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884472273&rft_id=info:pmid/&rft_ieee_id=1176885&rfr_iscdi=true