Loading…
A prediction-based neural network scheme for lossless data compression
This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The s...
Saved in:
Published in: | IEEE transactions on human-machine systems 2002-11, Vol.32 (4), p.358-365 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03 |
container_end_page | 365 |
container_issue | 4 |
container_start_page | 358 |
container_title | IEEE transactions on human-machine systems |
container_volume | 32 |
creator | Logeswaran, R. |
description | This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression. |
doi_str_mv | 10.1109/TSMCC.2002.806744 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1176885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176885</ieee_id><sourcerecordid>907970221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</originalsourceid><addsrcrecordid>eNqFkdFLwzAQxosoOKd_gPhSBPWp8y69JunjGE6FiQ_O55BmKXZ27UxaxP_ezA0GPigc3EF-3x35vig6RxghQn47f3maTEYMgI0kcEF0EA0wy2TCiNhhmCGnhOdCHEcn3i8BkChPB9F0HK-dXVSmq9omKbS3i7ixvdN1aN1n695jb97sysZl6-K69b623scL3enYtKug9T4oT6OjUtfenu36MHqd3s0nD8ns-f5xMp4lhpC6hDOSHNFSGYoZA1lWMJHbtEQsiqIEQsGBNC2EyAojNXEsU9ASJJLWkA6jm-3etWs_eus7taq8sXWtG9v2XuUgcgGMYSCv_yRZDpAG_H9QBqMYbm5f_gKXbe-a8F0lJZFgTKQBwi1kXPDK2VKtXbXS7kshqE1S6icptUlKbZMKmqvdYu2NrkunG1P5vZA45wxZ4C62XGWt3T8Hy6TM0m8P_pqR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884472273</pqid></control><display><type>article</type><title>A prediction-based neural network scheme for lossless data compression</title><source>IEEE Xplore (Online service)</source><creator>Logeswaran, R.</creator><creatorcontrib>Logeswaran, R.</creatorcontrib><description>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</description><identifier>ISSN: 1094-6977</identifier><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 1558-2442</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/TSMCC.2002.806744</identifier><identifier>CODEN: ITCRFH</identifier><language>eng</language><publisher>New-York, NY: IEEE</publisher><subject>Applied sciences ; Artificial neural networks ; Data compression ; Exact sciences and technology ; Feedforward neural networks ; Finite impulse response filter ; Hardware ; Image coding ; Miscellaneous ; Neural networks ; Operation, maintenance, reliability of teleprocessing networks ; Propagation losses ; Recurrent neural networks ; Redundancy ; Studies ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn</subject><ispartof>IEEE transactions on human-machine systems, 2002-11, Vol.32 (4), p.358-365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</citedby><cites>FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14666212$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Logeswaran, R.</creatorcontrib><title>A prediction-based neural network scheme for lossless data compression</title><title>IEEE transactions on human-machine systems</title><addtitle>TSMCC</addtitle><description>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</description><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Data compression</subject><subject>Exact sciences and technology</subject><subject>Feedforward neural networks</subject><subject>Finite impulse response filter</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Miscellaneous</subject><subject>Neural networks</subject><subject>Operation, maintenance, reliability of teleprocessing networks</subject><subject>Propagation losses</subject><subject>Recurrent neural networks</subject><subject>Redundancy</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><issn>1094-6977</issn><issn>2168-2291</issn><issn>1558-2442</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkdFLwzAQxosoOKd_gPhSBPWp8y69JunjGE6FiQ_O55BmKXZ27UxaxP_ezA0GPigc3EF-3x35vig6RxghQn47f3maTEYMgI0kcEF0EA0wy2TCiNhhmCGnhOdCHEcn3i8BkChPB9F0HK-dXVSmq9omKbS3i7ixvdN1aN1n695jb97sysZl6-K69b623scL3enYtKug9T4oT6OjUtfenu36MHqd3s0nD8ns-f5xMp4lhpC6hDOSHNFSGYoZA1lWMJHbtEQsiqIEQsGBNC2EyAojNXEsU9ASJJLWkA6jm-3etWs_eus7taq8sXWtG9v2XuUgcgGMYSCv_yRZDpAG_H9QBqMYbm5f_gKXbe-a8F0lJZFgTKQBwi1kXPDK2VKtXbXS7kshqE1S6icptUlKbZMKmqvdYu2NrkunG1P5vZA45wxZ4C62XGWt3T8Hy6TM0m8P_pqR</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Logeswaran, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20021101</creationdate><title>A prediction-based neural network scheme for lossless data compression</title><author>Logeswaran, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Data compression</topic><topic>Exact sciences and technology</topic><topic>Feedforward neural networks</topic><topic>Finite impulse response filter</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Miscellaneous</topic><topic>Neural networks</topic><topic>Operation, maintenance, reliability of teleprocessing networks</topic><topic>Propagation losses</topic><topic>Recurrent neural networks</topic><topic>Redundancy</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logeswaran, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logeswaran, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction-based neural network scheme for lossless data compression</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>TSMCC</stitle><date>2002-11-01</date><risdate>2002</risdate><volume>32</volume><issue>4</issue><spage>358</spage><epage>365</epage><pages>358-365</pages><issn>1094-6977</issn><issn>2168-2291</issn><eissn>1558-2442</eissn><eissn>2168-2305</eissn><coden>ITCRFH</coden><abstract>This paper proposes a modified block-adaptive prediction-based neural network scheme for lossless data compression. A variety of neural network models from a selection of different network types, including feedforward, recurrent, and radial basis configurations are implemented with the scheme. The scheme is further expanded with combinations of popular lossless encoding algorithms. Simulation results are presented, taking characteristic features of the models, transmission issues, and practical considerations into account to determine optimized configuration, suitable training strategies, and implementation schemes. Estimations are used for comparisons of these characteristics with the existing schemes. It is also shown that the adaptations of the improvised scheme increases performance of even the classical predictors evaluated. In addition, the results obtained support that the total processing time of the two-stage scheme can, in certain cases, be faster than just using lossless encoders. Findings of the paper may be beneficial for future work, such as, in the hardware implementations of dedicated neural chips for lossless compression.</abstract><cop>New-York, NY</cop><pub>IEEE</pub><doi>10.1109/TSMCC.2002.806744</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-6977 |
ispartof | IEEE transactions on human-machine systems, 2002-11, Vol.32 (4), p.358-365 |
issn | 1094-6977 2168-2291 1558-2442 2168-2305 |
language | eng |
recordid | cdi_ieee_primary_1176885 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Artificial neural networks Data compression Exact sciences and technology Feedforward neural networks Finite impulse response filter Hardware Image coding Miscellaneous Neural networks Operation, maintenance, reliability of teleprocessing networks Propagation losses Recurrent neural networks Redundancy Studies Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn |
title | A prediction-based neural network scheme for lossless data compression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction-based%20neural%20network%20scheme%20for%20lossless%20data%20compression&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Logeswaran,%20R.&rft.date=2002-11-01&rft.volume=32&rft.issue=4&rft.spage=358&rft.epage=365&rft.pages=358-365&rft.issn=1094-6977&rft.eissn=1558-2442&rft.coden=ITCRFH&rft_id=info:doi/10.1109/TSMCC.2002.806744&rft_dat=%3Cproquest_ieee_%3E907970221%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-6248611e4fe4f2cc055b279e3f11bbbf0417604a4d775bc8a461f30a80814aa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884472273&rft_id=info:pmid/&rft_ieee_id=1176885&rfr_iscdi=true |