Loading…
Carbon nanotube electronics
Presents experimental results on single-wall carbon nanotube field-effect transistors (CNFETs) operating at gate and drain voltages below 1V. Taking into account the extremely small diameter of the semiconducting tubes used as active components, electrical characteristics are comparable with state-o...
Saved in:
Published in: | IEEE transactions on nanotechnology 2002-12, Vol.1 (4), p.184-189 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Presents experimental results on single-wall carbon nanotube field-effect transistors (CNFETs) operating at gate and drain voltages below 1V. Taking into account the extremely small diameter of the semiconducting tubes used as active components, electrical characteristics are comparable with state-of-the-art metal oxide semiconductor field-effect transistors (MOSFETs). While output as well as subthreshold characteristics resemble those of conventional MOSFETs, we find that CNFET operation is actually controlled by Schottky barriers (SBs) in the source and drain region instead of by the nanotube itself. Due to the small size of the contact region between the electrode and the nanotube, these barriers can be extremely thin, enabling good performance of SB-CNFETs. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2002.807390 |