Loading…

On the peak-to-average power of OFDM signals based on oversampling

Orthogonal frequency-division multiplexing (OFDM) introduces large amplitude variations in time, which can result in significant signal distortion in the presence of nonlinear amplifiers. We introduce a new bound for the peak of the continuous envelope of an OFDM signal, based on the maximum of its...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2003-01, Vol.51 (1), p.72-78
Main Authors: Sharif, M., Gharavi-Alkhansari, M., Khalaj, B.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthogonal frequency-division multiplexing (OFDM) introduces large amplitude variations in time, which can result in significant signal distortion in the presence of nonlinear amplifiers. We introduce a new bound for the peak of the continuous envelope of an OFDM signal, based on the maximum of its corresponding oversampled sequence; it is shown to be very tight as the oversampling rate increases. The bound is then used to derive a closed-form probability upper bound for the complementary cumulative distribution function of the peak-to-mean envelope power ratio of uncoded OFDM signals for sufficiently large numbers of subcarriers. As another application of the bound for oversampled sequences, we propose tight relative error bounds for computation of the peak power using two main methods: the oversampled inverse fast Fourier transform and the method introduced for coded systems based on minimum distance decoding of the code.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2002.807619