Loading…
Power from random strings
We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and non-uniform reductions. These sets are provably not complete under the usual many-one reductions. Let R/sub K/, R/sub Kt/, R/sub KS/...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 678 |
container_issue | |
container_start_page | 669 |
container_title | |
container_volume | |
creator | Allender, E. Buhrman, H. Koucky, M. van Melkebeek, D. Ronneburger, D. |
description | We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and non-uniform reductions. These sets are provably not complete under the usual many-one reductions. Let R/sub K/, R/sub Kt/, R/sub KS/, R/sub KT/ be the sets of strings x having complexity at least |x|/2, according to the usual Kolmogorov complexity measure K, Levin's time-bounded Kolmogorov complexity Kt [27], a space-bounded Kolmogorov measure KS, and the time-bounded Kolmogorov complexity measure KT that was introduced in [4], respectively. Our main results are: 1. R/sub KS/ and R/sub Kt/ are complete for PSPACE and EXP, respectively, under P/poly-truth-table reductions. 2. EXP = NP/sup R(Kt)/. 3. PSPACE = ZPP/sup R(KS)/ /spl sube/ P/sup R(K)/. 4. The Discrete Log, Factoring, and several lattice problems are solvable in BPP/sup R(KT)/. |
doi_str_mv | 10.1109/SFCS.2002.1181992 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1181992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1181992</ieee_id><sourcerecordid>15618534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c47d2a39d35cab52121055e45f045e6a246a3683a88d3dde0716e73c4707f3983</originalsourceid><addsrcrecordid>eNpFT8tKQzEUDKhgW_2A4qYbl7eenJOTx1IuVoVCC9V1iTeJRPoiKYh_74UruBqGeTAjxFTCXEpwD5tFu5kjAPbUSufwQozBaMfSIuKlGAEabFihvRbjWr8AFDDQSEzXx-9YZqkc97PiD6GHei758FlvxFXyuxpv_3Ai3hdPb-1Ls1w9v7aPyyYj0LnplAnoyQXizn8wSpTAHBUnUBy1R6U9aUve2kAhRDBSR0N9DEwiZ2ki7ofek6-d36V-RZfr9lTy3pefrWQtLZPqfXeDL8cY_-XhLv0CE45GOQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power from random strings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Allender, E. ; Buhrman, H. ; Koucky, M. ; van Melkebeek, D. ; Ronneburger, D.</creator><creatorcontrib>Allender, E. ; Buhrman, H. ; Koucky, M. ; van Melkebeek, D. ; Ronneburger, D.</creatorcontrib><description>We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and non-uniform reductions. These sets are provably not complete under the usual many-one reductions. Let R/sub K/, R/sub Kt/, R/sub KS/, R/sub KT/ be the sets of strings x having complexity at least |x|/2, according to the usual Kolmogorov complexity measure K, Levin's time-bounded Kolmogorov complexity Kt [27], a space-bounded Kolmogorov measure KS, and the time-bounded Kolmogorov complexity measure KT that was introduced in [4], respectively. Our main results are: 1. R/sub KS/ and R/sub Kt/ are complete for PSPACE and EXP, respectively, under P/poly-truth-table reductions. 2. EXP = NP/sup R(Kt)/. 3. PSPACE = ZPP/sup R(KS)/ /spl sube/ P/sup R(K)/. 4. The Discrete Log, Factoring, and several lattice problems are solvable in BPP/sup R(KT)/.</description><identifier>ISSN: 0272-5428</identifier><identifier>ISBN: 0769518222</identifier><identifier>ISBN: 9780769518220</identifier><identifier>DOI: 10.1109/SFCS.2002.1181992</identifier><language>eng</language><publisher>Los Alamitos CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Circuits ; Computer science; control theory; systems ; Engineering profession ; Exact sciences and technology ; Lattices ; Polynomials ; Theoretical computing</subject><ispartof>Annual Symposium on Foundations of Computer Science, 2002, p.669-678</ispartof><rights>2004 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1181992$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1181992$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15618534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Allender, E.</creatorcontrib><creatorcontrib>Buhrman, H.</creatorcontrib><creatorcontrib>Koucky, M.</creatorcontrib><creatorcontrib>van Melkebeek, D.</creatorcontrib><creatorcontrib>Ronneburger, D.</creatorcontrib><title>Power from random strings</title><title>Annual Symposium on Foundations of Computer Science</title><addtitle>SFCS</addtitle><description>We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and non-uniform reductions. These sets are provably not complete under the usual many-one reductions. Let R/sub K/, R/sub Kt/, R/sub KS/, R/sub KT/ be the sets of strings x having complexity at least |x|/2, according to the usual Kolmogorov complexity measure K, Levin's time-bounded Kolmogorov complexity Kt [27], a space-bounded Kolmogorov measure KS, and the time-bounded Kolmogorov complexity measure KT that was introduced in [4], respectively. Our main results are: 1. R/sub KS/ and R/sub Kt/ are complete for PSPACE and EXP, respectively, under P/poly-truth-table reductions. 2. EXP = NP/sup R(Kt)/. 3. PSPACE = ZPP/sup R(KS)/ /spl sube/ P/sup R(K)/. 4. The Discrete Log, Factoring, and several lattice problems are solvable in BPP/sup R(KT)/.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Circuits</subject><subject>Computer science; control theory; systems</subject><subject>Engineering profession</subject><subject>Exact sciences and technology</subject><subject>Lattices</subject><subject>Polynomials</subject><subject>Theoretical computing</subject><issn>0272-5428</issn><isbn>0769518222</isbn><isbn>9780769518220</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFT8tKQzEUDKhgW_2A4qYbl7eenJOTx1IuVoVCC9V1iTeJRPoiKYh_74UruBqGeTAjxFTCXEpwD5tFu5kjAPbUSufwQozBaMfSIuKlGAEabFihvRbjWr8AFDDQSEzXx-9YZqkc97PiD6GHei758FlvxFXyuxpv_3Ai3hdPb-1Ls1w9v7aPyyYj0LnplAnoyQXizn8wSpTAHBUnUBy1R6U9aUve2kAhRDBSR0N9DEwiZ2ki7ofek6-d36V-RZfr9lTy3pefrWQtLZPqfXeDL8cY_-XhLv0CE45GOQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Allender, E.</creator><creator>Buhrman, H.</creator><creator>Koucky, M.</creator><creator>van Melkebeek, D.</creator><creator>Ronneburger, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Power from random strings</title><author>Allender, E. ; Buhrman, H. ; Koucky, M. ; van Melkebeek, D. ; Ronneburger, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c47d2a39d35cab52121055e45f045e6a246a3683a88d3dde0716e73c4707f3983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Circuits</topic><topic>Computer science; control theory; systems</topic><topic>Engineering profession</topic><topic>Exact sciences and technology</topic><topic>Lattices</topic><topic>Polynomials</topic><topic>Theoretical computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Allender, E.</creatorcontrib><creatorcontrib>Buhrman, H.</creatorcontrib><creatorcontrib>Koucky, M.</creatorcontrib><creatorcontrib>van Melkebeek, D.</creatorcontrib><creatorcontrib>Ronneburger, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Allender, E.</au><au>Buhrman, H.</au><au>Koucky, M.</au><au>van Melkebeek, D.</au><au>Ronneburger, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power from random strings</atitle><btitle>Annual Symposium on Foundations of Computer Science</btitle><stitle>SFCS</stitle><date>2002</date><risdate>2002</risdate><spage>669</spage><epage>678</epage><pages>669-678</pages><issn>0272-5428</issn><isbn>0769518222</isbn><isbn>9780769518220</isbn><abstract>We show that sets consisting of strings of high Kolmogorov complexity provide examples of sets that are complete for several complexity classes under probabilistic and non-uniform reductions. These sets are provably not complete under the usual many-one reductions. Let R/sub K/, R/sub Kt/, R/sub KS/, R/sub KT/ be the sets of strings x having complexity at least |x|/2, according to the usual Kolmogorov complexity measure K, Levin's time-bounded Kolmogorov complexity Kt [27], a space-bounded Kolmogorov measure KS, and the time-bounded Kolmogorov complexity measure KT that was introduced in [4], respectively. Our main results are: 1. R/sub KS/ and R/sub Kt/ are complete for PSPACE and EXP, respectively, under P/poly-truth-table reductions. 2. EXP = NP/sup R(Kt)/. 3. PSPACE = ZPP/sup R(KS)/ /spl sube/ P/sup R(K)/. 4. The Discrete Log, Factoring, and several lattice problems are solvable in BPP/sup R(KT)/.</abstract><cop>Los Alamitos CA</cop><pub>IEEE</pub><doi>10.1109/SFCS.2002.1181992</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-5428 |
ispartof | Annual Symposium on Foundations of Computer Science, 2002, p.669-678 |
issn | 0272-5428 |
language | eng |
recordid | cdi_ieee_primary_1181992 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Circuits Computer science control theory systems Engineering profession Exact sciences and technology Lattices Polynomials Theoretical computing |
title | Power from random strings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power%20from%20random%20strings&rft.btitle=Annual%20Symposium%20on%20Foundations%20of%20Computer%20Science&rft.au=Allender,%20E.&rft.date=2002&rft.spage=669&rft.epage=678&rft.pages=669-678&rft.issn=0272-5428&rft.isbn=0769518222&rft.isbn_list=9780769518220&rft_id=info:doi/10.1109/SFCS.2002.1181992&rft_dat=%3Cpascalfrancis_6IE%3E15618534%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c47d2a39d35cab52121055e45f045e6a246a3683a88d3dde0716e73c4707f3983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1181992&rfr_iscdi=true |