Loading…

ESRS: a case selection algorithm using extended similarity-based rough sets

A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfacto...

Full description

Saved in:
Bibliographic Details
Main Authors: Liqiang Geng, Hamilton, H.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 612
container_issue
container_start_page 609
container_title
container_volume
creator Liqiang Geng
Hamilton, H.J.
description A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.
doi_str_mv 10.1109/ICDM.2002.1184010
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1184010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184010</ieee_id><sourcerecordid>1184010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkA8WV_IPVs9u6bxGqLFcHqc9kkZ9OVXCSbgv17F-x5GWaGGeYQcstgyRjY-0359LYsAIpEjQAGFySz2oBWVjIthbgiWYzfkE5IAYW9Jq-r3cfugTpau4g0Yof1HMaBuq4dpzAfenqMYWgp_s44NNjQGPrQuWSd8ipFGjqNx_aQknO8IZfedRGzMy7I1_Pqs1zn2_eXTfm4zUMaMedGGW8arwFRoEfFrJK-Ych9xWpuNEcFTnOrTAVVra3XlS2S5oW1UivPF-Tuvzcg4v5nCr2bTvvzy_wPFlZMQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liqiang Geng ; Hamilton, H.J.</creator><creatorcontrib>Liqiang Geng ; Hamilton, H.J.</creatorcontrib><description>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</description><identifier>ISBN: 9780769517544</identifier><identifier>ISBN: 0769517544</identifier><identifier>DOI: 10.1109/ICDM.2002.1184010</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clustering algorithms ; Computer aided software engineering ; Computer science ; Frequency ; Machine learning algorithms ; Nearest neighbor searches ; Paramagnetic resonance ; Rough sets ; Set theory</subject><ispartof>2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.609-612</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1184010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><title>2002 IEEE International Conference on Data Mining, 2002. Proceedings</title><addtitle>ICDM</addtitle><description>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</description><subject>Accuracy</subject><subject>Clustering algorithms</subject><subject>Computer aided software engineering</subject><subject>Computer science</subject><subject>Frequency</subject><subject>Machine learning algorithms</subject><subject>Nearest neighbor searches</subject><subject>Paramagnetic resonance</subject><subject>Rough sets</subject><subject>Set theory</subject><isbn>9780769517544</isbn><isbn>0769517544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXBBBqfkA8WV_IPVs9u6bxGqLFcHqc9kkZ9OVXCSbgv17F-x5GWaGGeYQcstgyRjY-0359LYsAIpEjQAGFySz2oBWVjIthbgiWYzfkE5IAYW9Jq-r3cfugTpau4g0Yof1HMaBuq4dpzAfenqMYWgp_s44NNjQGPrQuWSd8ipFGjqNx_aQknO8IZfedRGzMy7I1_Pqs1zn2_eXTfm4zUMaMedGGW8arwFRoEfFrJK-Ych9xWpuNEcFTnOrTAVVra3XlS2S5oW1UivPF-Tuvzcg4v5nCr2bTvvzy_wPFlZMQQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Liqiang Geng</creator><creator>Hamilton, H.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><author>Liqiang Geng ; Hamilton, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Clustering algorithms</topic><topic>Computer aided software engineering</topic><topic>Computer science</topic><topic>Frequency</topic><topic>Machine learning algorithms</topic><topic>Nearest neighbor searches</topic><topic>Paramagnetic resonance</topic><topic>Rough sets</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liqiang Geng</au><au>Hamilton, H.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ESRS: a case selection algorithm using extended similarity-based rough sets</atitle><btitle>2002 IEEE International Conference on Data Mining, 2002. Proceedings</btitle><stitle>ICDM</stitle><date>2002</date><risdate>2002</risdate><spage>609</spage><epage>612</epage><pages>609-612</pages><isbn>9780769517544</isbn><isbn>0769517544</isbn><abstract>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2002.1184010</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769517544
ispartof 2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.609-612
issn
language eng
recordid cdi_ieee_primary_1184010
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Clustering algorithms
Computer aided software engineering
Computer science
Frequency
Machine learning algorithms
Nearest neighbor searches
Paramagnetic resonance
Rough sets
Set theory
title ESRS: a case selection algorithm using extended similarity-based rough sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ESRS:%20a%20case%20selection%20algorithm%20using%20extended%20similarity-based%20rough%20sets&rft.btitle=2002%20IEEE%20International%20Conference%20on%20Data%20Mining,%202002.%20Proceedings&rft.au=Liqiang%20Geng&rft.date=2002&rft.spage=609&rft.epage=612&rft.pages=609-612&rft.isbn=9780769517544&rft.isbn_list=0769517544&rft_id=info:doi/10.1109/ICDM.2002.1184010&rft_dat=%3Cieee_6IE%3E1184010%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1184010&rfr_iscdi=true