Loading…
ESRS: a case selection algorithm using extended similarity-based rough sets
A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfacto...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 612 |
container_issue | |
container_start_page | 609 |
container_title | |
container_volume | |
creator | Liqiang Geng Hamilton, H.J. |
description | A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined. |
doi_str_mv | 10.1109/ICDM.2002.1184010 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1184010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184010</ieee_id><sourcerecordid>1184010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkA8WV_IPVs9u6bxGqLFcHqc9kkZ9OVXCSbgv17F-x5GWaGGeYQcstgyRjY-0359LYsAIpEjQAGFySz2oBWVjIthbgiWYzfkE5IAYW9Jq-r3cfugTpau4g0Yof1HMaBuq4dpzAfenqMYWgp_s44NNjQGPrQuWSd8ipFGjqNx_aQknO8IZfedRGzMy7I1_Pqs1zn2_eXTfm4zUMaMedGGW8arwFRoEfFrJK-Ych9xWpuNEcFTnOrTAVVra3XlS2S5oW1UivPF-Tuvzcg4v5nCr2bTvvzy_wPFlZMQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liqiang Geng ; Hamilton, H.J.</creator><creatorcontrib>Liqiang Geng ; Hamilton, H.J.</creatorcontrib><description>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</description><identifier>ISBN: 9780769517544</identifier><identifier>ISBN: 0769517544</identifier><identifier>DOI: 10.1109/ICDM.2002.1184010</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clustering algorithms ; Computer aided software engineering ; Computer science ; Frequency ; Machine learning algorithms ; Nearest neighbor searches ; Paramagnetic resonance ; Rough sets ; Set theory</subject><ispartof>2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.609-612</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1184010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><title>2002 IEEE International Conference on Data Mining, 2002. Proceedings</title><addtitle>ICDM</addtitle><description>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</description><subject>Accuracy</subject><subject>Clustering algorithms</subject><subject>Computer aided software engineering</subject><subject>Computer science</subject><subject>Frequency</subject><subject>Machine learning algorithms</subject><subject>Nearest neighbor searches</subject><subject>Paramagnetic resonance</subject><subject>Rough sets</subject><subject>Set theory</subject><isbn>9780769517544</isbn><isbn>0769517544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXBBBqfkA8WV_IPVs9u6bxGqLFcHqc9kkZ9OVXCSbgv17F-x5GWaGGeYQcstgyRjY-0359LYsAIpEjQAGFySz2oBWVjIthbgiWYzfkE5IAYW9Jq-r3cfugTpau4g0Yof1HMaBuq4dpzAfenqMYWgp_s44NNjQGPrQuWSd8ipFGjqNx_aQknO8IZfedRGzMy7I1_Pqs1zn2_eXTfm4zUMaMedGGW8arwFRoEfFrJK-Ych9xWpuNEcFTnOrTAVVra3XlS2S5oW1UivPF-Tuvzcg4v5nCr2bTvvzy_wPFlZMQQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Liqiang Geng</creator><creator>Hamilton, H.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>ESRS: a case selection algorithm using extended similarity-based rough sets</title><author>Liqiang Geng ; Hamilton, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Clustering algorithms</topic><topic>Computer aided software engineering</topic><topic>Computer science</topic><topic>Frequency</topic><topic>Machine learning algorithms</topic><topic>Nearest neighbor searches</topic><topic>Paramagnetic resonance</topic><topic>Rough sets</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liqiang Geng</au><au>Hamilton, H.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ESRS: a case selection algorithm using extended similarity-based rough sets</atitle><btitle>2002 IEEE International Conference on Data Mining, 2002. Proceedings</btitle><stitle>ICDM</stitle><date>2002</date><risdate>2002</risdate><spage>609</spage><epage>612</epage><pages>609-612</pages><isbn>9780769517544</isbn><isbn>0769517544</isbn><abstract>A case selection algorithm selects representative cases from a large data set for future case-based reasoning tasks. This paper proposes the ESRS algorithm, based on extended similarity-based rough set theory, which selects a reasonable number of the representative cases while maintaining satisfactory classification accuracy. It also can handle noise and inconsistent data. Experimental results on synthetic and real sets of cases showed that its predictive accuracy is similar to that of well-known machine learning systems on standard data sets, while it has the advantage of being applicable to any data set where a similarity function can be defined.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2002.1184010</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769517544 |
ispartof | 2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.609-612 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1184010 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Clustering algorithms Computer aided software engineering Computer science Frequency Machine learning algorithms Nearest neighbor searches Paramagnetic resonance Rough sets Set theory |
title | ESRS: a case selection algorithm using extended similarity-based rough sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ESRS:%20a%20case%20selection%20algorithm%20using%20extended%20similarity-based%20rough%20sets&rft.btitle=2002%20IEEE%20International%20Conference%20on%20Data%20Mining,%202002.%20Proceedings&rft.au=Liqiang%20Geng&rft.date=2002&rft.spage=609&rft.epage=612&rft.pages=609-612&rft.isbn=9780769517544&rft.isbn_list=0769517544&rft_id=info:doi/10.1109/ICDM.2002.1184010&rft_dat=%3Cieee_6IE%3E1184010%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-868f8df70ee4efe61965fd1e3fb1c3873e60a73968b0bc79f7b92e60f499576f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1184010&rfr_iscdi=true |