Loading…
FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences
The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivale...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 732 |
container_issue | |
container_start_page | 729 |
container_title | |
container_volume | |
creator | Hong Yao Hamilton, H.J. Butz, C.J. |
description | The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods. |
doi_str_mv | 10.1109/ICDM.2002.1184040 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1184040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184040</ieee_id><sourcerecordid>1184040</sourcerecordid><originalsourceid>FETCH-ieee_primary_11840403</originalsourceid><addsrcrecordid>eNp9jsEKglAQRR9EUJQfEG3eD6SjPTPbZpILd0HLmHSKCXuZk0F_n4Hr7uZyOWdxlZr54Po-xF62TXI3AAi6uTZgYKCcOFpDtIpDPwqNGSlH5AZdTGggiMfqmCae1JXO3DM2Xs6WNrpkKR5vathe9aW1xYsfFitdUk22JFswiWarUZf4wjMK6VZ-Lj1bfmPVGSRTNbxgJeT0PVHzdHfY7hdMRKe64Ts2n1N_c_mffgHyLUFt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</creator><creatorcontrib>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</creatorcontrib><description>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</description><identifier>ISBN: 9780769517544</identifier><identifier>ISBN: 0769517544</identifier><identifier>DOI: 10.1109/ICDM.2002.1184040</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical compounds ; Computer science ; Independent component analysis ; Lattices ; Partitioning algorithms ; Relational databases ; Sorting</subject><ispartof>2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.729-732</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1184040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong Yao</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Butz, C.J.</creatorcontrib><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><title>2002 IEEE International Conference on Data Mining, 2002. Proceedings</title><addtitle>ICDM</addtitle><description>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</description><subject>Chemical compounds</subject><subject>Computer science</subject><subject>Independent component analysis</subject><subject>Lattices</subject><subject>Partitioning algorithms</subject><subject>Relational databases</subject><subject>Sorting</subject><isbn>9780769517544</isbn><isbn>0769517544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jsEKglAQRR9EUJQfEG3eD6SjPTPbZpILd0HLmHSKCXuZk0F_n4Hr7uZyOWdxlZr54Po-xF62TXI3AAi6uTZgYKCcOFpDtIpDPwqNGSlH5AZdTGggiMfqmCae1JXO3DM2Xs6WNrpkKR5vathe9aW1xYsfFitdUk22JFswiWarUZf4wjMK6VZ-Lj1bfmPVGSRTNbxgJeT0PVHzdHfY7hdMRKe64Ts2n1N_c_mffgHyLUFt</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hong Yao</creator><creator>Hamilton, H.J.</creator><creator>Butz, C.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><author>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_11840403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemical compounds</topic><topic>Computer science</topic><topic>Independent component analysis</topic><topic>Lattices</topic><topic>Partitioning algorithms</topic><topic>Relational databases</topic><topic>Sorting</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong Yao</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Butz, C.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong Yao</au><au>Hamilton, H.J.</au><au>Butz, C.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</atitle><btitle>2002 IEEE International Conference on Data Mining, 2002. Proceedings</btitle><stitle>ICDM</stitle><date>2002</date><risdate>2002</risdate><spage>729</spage><epage>732</epage><pages>729-732</pages><isbn>9780769517544</isbn><isbn>0769517544</isbn><abstract>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2002.1184040</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769517544 |
ispartof | 2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.729-732 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1184040 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chemical compounds Computer science Independent component analysis Lattices Partitioning algorithms Relational databases Sorting |
title | FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FD/spl%20I.bar/Mine:%20discovering%20functional%20dependencies%20in%20a%20database%20using%20equivalences&rft.btitle=2002%20IEEE%20International%20Conference%20on%20Data%20Mining,%202002.%20Proceedings&rft.au=Hong%20Yao&rft.date=2002&rft.spage=729&rft.epage=732&rft.pages=729-732&rft.isbn=9780769517544&rft.isbn_list=0769517544&rft_id=info:doi/10.1109/ICDM.2002.1184040&rft_dat=%3Cieee_6IE%3E1184040%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_11840403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1184040&rfr_iscdi=true |