Loading…

FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences

The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivale...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong Yao, Hamilton, H.J., Butz, C.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 732
container_issue
container_start_page 729
container_title
container_volume
creator Hong Yao
Hamilton, H.J.
Butz, C.J.
description The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.
doi_str_mv 10.1109/ICDM.2002.1184040
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1184040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1184040</ieee_id><sourcerecordid>1184040</sourcerecordid><originalsourceid>FETCH-ieee_primary_11840403</originalsourceid><addsrcrecordid>eNp9jsEKglAQRR9EUJQfEG3eD6SjPTPbZpILd0HLmHSKCXuZk0F_n4Hr7uZyOWdxlZr54Po-xF62TXI3AAi6uTZgYKCcOFpDtIpDPwqNGSlH5AZdTGggiMfqmCae1JXO3DM2Xs6WNrpkKR5vathe9aW1xYsfFitdUk22JFswiWarUZf4wjMK6VZ-Lj1bfmPVGSRTNbxgJeT0PVHzdHfY7hdMRKe64Ts2n1N_c_mffgHyLUFt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</creator><creatorcontrib>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</creatorcontrib><description>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</description><identifier>ISBN: 9780769517544</identifier><identifier>ISBN: 0769517544</identifier><identifier>DOI: 10.1109/ICDM.2002.1184040</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical compounds ; Computer science ; Independent component analysis ; Lattices ; Partitioning algorithms ; Relational databases ; Sorting</subject><ispartof>2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.729-732</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1184040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1184040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong Yao</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Butz, C.J.</creatorcontrib><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><title>2002 IEEE International Conference on Data Mining, 2002. Proceedings</title><addtitle>ICDM</addtitle><description>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</description><subject>Chemical compounds</subject><subject>Computer science</subject><subject>Independent component analysis</subject><subject>Lattices</subject><subject>Partitioning algorithms</subject><subject>Relational databases</subject><subject>Sorting</subject><isbn>9780769517544</isbn><isbn>0769517544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jsEKglAQRR9EUJQfEG3eD6SjPTPbZpILd0HLmHSKCXuZk0F_n4Hr7uZyOWdxlZr54Po-xF62TXI3AAi6uTZgYKCcOFpDtIpDPwqNGSlH5AZdTGggiMfqmCae1JXO3DM2Xs6WNrpkKR5vathe9aW1xYsfFitdUk22JFswiWarUZf4wjMK6VZ-Lj1bfmPVGSRTNbxgJeT0PVHzdHfY7hdMRKe64Ts2n1N_c_mffgHyLUFt</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Hong Yao</creator><creator>Hamilton, H.J.</creator><creator>Butz, C.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</title><author>Hong Yao ; Hamilton, H.J. ; Butz, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_11840403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemical compounds</topic><topic>Computer science</topic><topic>Independent component analysis</topic><topic>Lattices</topic><topic>Partitioning algorithms</topic><topic>Relational databases</topic><topic>Sorting</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong Yao</creatorcontrib><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Butz, C.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong Yao</au><au>Hamilton, H.J.</au><au>Butz, C.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences</atitle><btitle>2002 IEEE International Conference on Data Mining, 2002. Proceedings</btitle><stitle>ICDM</stitle><date>2002</date><risdate>2002</risdate><spage>729</spage><epage>732</epage><pages>729-732</pages><isbn>9780769517544</isbn><isbn>0769517544</isbn><abstract>The discovery of FDs from databases has recently become a significant research problem. In this paper, we propose a new algorithm, called FD-Mine. FD-Mine takes advantage of the rich theory of FDs to reduce both the size of the dataset and the number of FDs to be checked by using discovered equivalences. We show that the pruning does not lead to loss of information. Experiments on 15 UCI datasets show that FD-Mine can prune more candidates than previous methods.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2002.1184040</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769517544
ispartof 2002 IEEE International Conference on Data Mining, 2002. Proceedings, 2002, p.729-732
issn
language eng
recordid cdi_ieee_primary_1184040
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical compounds
Computer science
Independent component analysis
Lattices
Partitioning algorithms
Relational databases
Sorting
title FD/spl I.bar/Mine: discovering functional dependencies in a database using equivalences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FD/spl%20I.bar/Mine:%20discovering%20functional%20dependencies%20in%20a%20database%20using%20equivalences&rft.btitle=2002%20IEEE%20International%20Conference%20on%20Data%20Mining,%202002.%20Proceedings&rft.au=Hong%20Yao&rft.date=2002&rft.spage=729&rft.epage=732&rft.pages=729-732&rft.isbn=9780769517544&rft.isbn_list=0769517544&rft_id=info:doi/10.1109/ICDM.2002.1184040&rft_dat=%3Cieee_6IE%3E1184040%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_11840403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1184040&rfr_iscdi=true