Loading…

Application of frequency correlation function to radar target detection

Analysis of high-resolution 35 GHz synthetic aperture radar (SAR) imagery of terrain reveals that when point targets, such as vehicles, are viewed at angles close to grazing incidence, they are often difficult to distinguish from tree trunks because the radar cross section (RCS) intensities of the v...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2003-01, Vol.39 (1), p.125-139
Main Authors: El-Rouby, A.E., Nashashibi, A.Y., Ulaby, F.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3
cites cdi_FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3
container_end_page 139
container_issue 1
container_start_page 125
container_title IEEE transactions on aerospace and electronic systems
container_volume 39
creator El-Rouby, A.E.
Nashashibi, A.Y.
Ulaby, F.T.
description Analysis of high-resolution 35 GHz synthetic aperture radar (SAR) imagery of terrain reveals that when point targets, such as vehicles, are viewed at angles close to grazing incidence, they are often difficult to distinguish from tree trunks because the radar cross section (RCS) intensities of the vehicles are comparable to the upper end of the RCS exhibited by tree trunks. To resolve the point target/tree trunk ambiguity problem, a detailed study was conducted to evaluate the use of new detection features based on the complex frequency correlation function (FCF). This paper presents an analytical examination of FCF and its physical meaning, the results of a numerical simulation study conducted to evaluate the performance of a detection algorithm that uses FCF, and the corroboration of theory with experimental observations conducted at 35 and 95 GHz. The FCF-based detection algorithm was found to correctly identify tree trunks as such in over 90% of the cases, while exhibiting a false alarm rate of only 3%.
doi_str_mv 10.1109/TAES.2003.1188898
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1188898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1188898</ieee_id><sourcerecordid>27923513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRsFZ_gHgJHvSUut8fx1JqFQoerOdls5lISprETXLovzdpCoIH62lmeJ8ZZuZF6JbgGSHYPG3my_cZxZj1pdba6DM0IUKo2EjMztEEY6JjQwW5RFdNs-1LrjmboNW8rovcuzavyqjKoizAVwel30e-CgGKUci60h-StoqCS12IWhc-oY1SaOGgXKOLzBUN3BzjFH08LzeLl3j9tnpdzNex51y2MdUSYykxcGqApgmVQBnXAC7NMqlZgilhTkppBOGEM5V4pZQhUqbepJCwKXoc59ah6hdtWrvLGw9F4UqousYaTBQ2WvKefPiTpAZjYYw8DWolmGb_AQU1TNPToDKUCcJ68P4XuK26UPYPtFpzIqTgwyFkhHyomiZAZuuQ71zYW4LtYL4dzLeD-fZoft9zN_bkAPDDH9Vvaqio9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884156544</pqid></control><display><type>article</type><title>Application of frequency correlation function to radar target detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>El-Rouby, A.E. ; Nashashibi, A.Y. ; Ulaby, F.T.</creator><creatorcontrib>El-Rouby, A.E. ; Nashashibi, A.Y. ; Ulaby, F.T.</creatorcontrib><description>Analysis of high-resolution 35 GHz synthetic aperture radar (SAR) imagery of terrain reveals that when point targets, such as vehicles, are viewed at angles close to grazing incidence, they are often difficult to distinguish from tree trunks because the radar cross section (RCS) intensities of the vehicles are comparable to the upper end of the RCS exhibited by tree trunks. To resolve the point target/tree trunk ambiguity problem, a detailed study was conducted to evaluate the use of new detection features based on the complex frequency correlation function (FCF). This paper presents an analytical examination of FCF and its physical meaning, the results of a numerical simulation study conducted to evaluate the performance of a detection algorithm that uses FCF, and the corroboration of theory with experimental observations conducted at 35 and 95 GHz. The FCF-based detection algorithm was found to correctly identify tree trunks as such in over 90% of the cases, while exhibiting a false alarm rate of only 3%.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2003.1188898</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Detection algorithms ; Feature based ; Frequency ; Image analysis ; Mathematical analysis ; Mathematical models ; Object detection ; Radar ; Radar applications ; Radar cross section ; Radar detection ; Radar imaging ; Studies ; Synthetic aperture radar ; Trees ; Trunks ; Vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2003-01, Vol.39 (1), p.125-139</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3</citedby><cites>FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1188898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>El-Rouby, A.E.</creatorcontrib><creatorcontrib>Nashashibi, A.Y.</creatorcontrib><creatorcontrib>Ulaby, F.T.</creatorcontrib><title>Application of frequency correlation function to radar target detection</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Analysis of high-resolution 35 GHz synthetic aperture radar (SAR) imagery of terrain reveals that when point targets, such as vehicles, are viewed at angles close to grazing incidence, they are often difficult to distinguish from tree trunks because the radar cross section (RCS) intensities of the vehicles are comparable to the upper end of the RCS exhibited by tree trunks. To resolve the point target/tree trunk ambiguity problem, a detailed study was conducted to evaluate the use of new detection features based on the complex frequency correlation function (FCF). This paper presents an analytical examination of FCF and its physical meaning, the results of a numerical simulation study conducted to evaluate the performance of a detection algorithm that uses FCF, and the corroboration of theory with experimental observations conducted at 35 and 95 GHz. The FCF-based detection algorithm was found to correctly identify tree trunks as such in over 90% of the cases, while exhibiting a false alarm rate of only 3%.</description><subject>Algorithms</subject><subject>Detection algorithms</subject><subject>Feature based</subject><subject>Frequency</subject><subject>Image analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Object detection</subject><subject>Radar</subject><subject>Radar applications</subject><subject>Radar cross section</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>Trees</subject><subject>Trunks</subject><subject>Vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRsFZ_gHgJHvSUut8fx1JqFQoerOdls5lISprETXLovzdpCoIH62lmeJ8ZZuZF6JbgGSHYPG3my_cZxZj1pdba6DM0IUKo2EjMztEEY6JjQwW5RFdNs-1LrjmboNW8rovcuzavyqjKoizAVwel30e-CgGKUci60h-StoqCS12IWhc-oY1SaOGgXKOLzBUN3BzjFH08LzeLl3j9tnpdzNex51y2MdUSYykxcGqApgmVQBnXAC7NMqlZgilhTkppBOGEM5V4pZQhUqbepJCwKXoc59ah6hdtWrvLGw9F4UqousYaTBQ2WvKefPiTpAZjYYw8DWolmGb_AQU1TNPToDKUCcJ68P4XuK26UPYPtFpzIqTgwyFkhHyomiZAZuuQ71zYW4LtYL4dzLeD-fZoft9zN_bkAPDDH9Vvaqio9g</recordid><startdate>200301</startdate><enddate>200301</enddate><creator>El-Rouby, A.E.</creator><creator>Nashashibi, A.Y.</creator><creator>Ulaby, F.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200301</creationdate><title>Application of frequency correlation function to radar target detection</title><author>El-Rouby, A.E. ; Nashashibi, A.Y. ; Ulaby, F.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Detection algorithms</topic><topic>Feature based</topic><topic>Frequency</topic><topic>Image analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Object detection</topic><topic>Radar</topic><topic>Radar applications</topic><topic>Radar cross section</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>Trees</topic><topic>Trunks</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Rouby, A.E.</creatorcontrib><creatorcontrib>Nashashibi, A.Y.</creatorcontrib><creatorcontrib>Ulaby, F.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Rouby, A.E.</au><au>Nashashibi, A.Y.</au><au>Ulaby, F.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of frequency correlation function to radar target detection</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2003-01</date><risdate>2003</risdate><volume>39</volume><issue>1</issue><spage>125</spage><epage>139</epage><pages>125-139</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Analysis of high-resolution 35 GHz synthetic aperture radar (SAR) imagery of terrain reveals that when point targets, such as vehicles, are viewed at angles close to grazing incidence, they are often difficult to distinguish from tree trunks because the radar cross section (RCS) intensities of the vehicles are comparable to the upper end of the RCS exhibited by tree trunks. To resolve the point target/tree trunk ambiguity problem, a detailed study was conducted to evaluate the use of new detection features based on the complex frequency correlation function (FCF). This paper presents an analytical examination of FCF and its physical meaning, the results of a numerical simulation study conducted to evaluate the performance of a detection algorithm that uses FCF, and the corroboration of theory with experimental observations conducted at 35 and 95 GHz. The FCF-based detection algorithm was found to correctly identify tree trunks as such in over 90% of the cases, while exhibiting a false alarm rate of only 3%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2003.1188898</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2003-01, Vol.39 (1), p.125-139
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_1188898
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Detection algorithms
Feature based
Frequency
Image analysis
Mathematical analysis
Mathematical models
Object detection
Radar
Radar applications
Radar cross section
Radar detection
Radar imaging
Studies
Synthetic aperture radar
Trees
Trunks
Vehicles
title Application of frequency correlation function to radar target detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20frequency%20correlation%20function%20to%20radar%20target%20detection&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=El-Rouby,%20A.E.&rft.date=2003-01&rft.volume=39&rft.issue=1&rft.spage=125&rft.epage=139&rft.pages=125-139&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2003.1188898&rft_dat=%3Cproquest_ieee_%3E27923513%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-28600660e429e2db26e2348eeadff683b0213a66695141437bc7779166dc9deb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884156544&rft_id=info:pmid/&rft_ieee_id=1188898&rfr_iscdi=true