Loading…
Fuzzy gain scheduling: controller and observer design based on Lyapunov method and convex optimization
Addresses model-based fuzzy control. A constructive and automated method for the design of a gain-scheduling controller is presented. Based on a given Takagi-Sugeno fuzzy model of the plant, the controller is designed such that stability and prescribed performance of the closed loop are guaranteed....
Saved in:
Published in: | IEEE transactions on fuzzy systems 2003-06, Vol.11 (3), p.285-298 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Addresses model-based fuzzy control. A constructive and automated method for the design of a gain-scheduling controller is presented. Based on a given Takagi-Sugeno fuzzy model of the plant, the controller is designed such that stability and prescribed performance of the closed loop are guaranteed. These properties are valid in a wide working range around an equilibrium without restrictions to slowly varying trajectories. The synthesis is based on linear matrix inequalities and convex optimization techniques. If required, a fuzzy state estimator and an extended controller can be included, providing a zero steady-state error in the presence of disturbances and modeling errors. The proposed method has been applied to a control of a laboratory liquid-level process. Hence, the performance has been evaluated in simulations as well as in real-time control. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2003.812680 |