Loading…
In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2003-06, Vol.50 (6), p.649-656 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3 |
container_end_page | 656 |
container_issue | 6 |
container_start_page | 649 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 50 |
creator | Steele, B.N. Jing Wan Ku, J.P. Hughes, T.J.R. Taylor, C.A. |
description | Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified. |
doi_str_mv | 10.1109/TBME.2003.812201 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1203803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1203803</ieee_id><sourcerecordid>1671349503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</originalsourceid><addsrcrecordid>eNqF0s9rFDEUB_Agil2rd0GQIPjjMmt-ziRHLVULFS_1PGSSNzUlk6zJzJb-92bYhYqHegp5fPJIXr4IvaRkSynRH68-fz_fMkL4VlHGCH2ENlRK1TDJ6WO0IYSqRjMtTtCzUm7qVijRPkUnlCkqGKcbdHsR8d7vE96b4J2ZfYo4jdjgFKFxfoJYaskEPProZ2ggQK3NeIL5V3J4TBnvMjhvZx-v8RDSWgzpFvuIrcnOp70pdgkm4-FuZ0rB19mMc3mOnowmFHhxXE_Rzy_nV2ffmssfXy_OPl02VrRqboTTnBAlJWedhrHlLWkHZrjuCOWSMmE1V25oB6P0IGHgWjsFo6XWOKDC8VP0_tB3l9PvBcrcT75YCMFESEvpleJESMJEle8elB3nXaXqv5DVGVMueIUfHoS07arTkqz0zT_0Ji25zn29oeBSab4ickA2p1IyjP0u-8nku56Sfs1Dv-ahX_PQH_JQj7w-9l2GCdz9gWMAKnh7BPWbTBizidaXe1cDo-qzq3t1cB4A_mpDuKrX_wPUNcVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884358933</pqid></control><display><type>article</type><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><source>IEEE Xplore (Online service)</source><creator>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</creator><creatorcontrib>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</creatorcontrib><description>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2003.812201</identifier><identifier>PMID: 12814231</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anastomosis, Surgical ; Animals ; Aorta, Thoracic - physiopathology ; Aorta, Thoracic - surgery ; Biological and medical sciences ; Biomedical materials ; Blood flow ; Blood Flow Velocity ; Bypasses ; Cardiology ; Computational modeling ; Computer Simulation ; Constriction, Pathologic - physiopathology ; Coronary Artery Bypass ; Distributed computing ; Equations ; Finite Element Analysis ; Finite element methods ; Flow rate ; Fluid flow measurement ; Graft Occlusion, Vascular - physiopathology ; In vivo ; In vivo tests ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical analysis ; Mathematical models ; Medical sciences ; Models, Cardiovascular ; Preoperative Care - methods ; Surgery ; Surgery, Computer-Assisted - methods ; Surgical implants ; Swine ; Thoracic Arteries - physiopathology ; Thoracic Arteries - surgery ; Transplants</subject><ispartof>IEEE transactions on biomedical engineering, 2003-06, Vol.50 (6), p.649-656</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</citedby><cites>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1203803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14848704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12814231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steele, B.N.</creatorcontrib><creatorcontrib>Jing Wan</creatorcontrib><creatorcontrib>Ku, J.P.</creatorcontrib><creatorcontrib>Hughes, T.J.R.</creatorcontrib><creatorcontrib>Taylor, C.A.</creatorcontrib><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</description><subject>Anastomosis, Surgical</subject><subject>Animals</subject><subject>Aorta, Thoracic - physiopathology</subject><subject>Aorta, Thoracic - surgery</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Bypasses</subject><subject>Cardiology</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Constriction, Pathologic - physiopathology</subject><subject>Coronary Artery Bypass</subject><subject>Distributed computing</subject><subject>Equations</subject><subject>Finite Element Analysis</subject><subject>Finite element methods</subject><subject>Flow rate</subject><subject>Fluid flow measurement</subject><subject>Graft Occlusion, Vascular - physiopathology</subject><subject>In vivo</subject><subject>In vivo tests</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Preoperative Care - methods</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Thoracic Arteries - physiopathology</subject><subject>Thoracic Arteries - surgery</subject><subject>Transplants</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0s9rFDEUB_Agil2rd0GQIPjjMmt-ziRHLVULFS_1PGSSNzUlk6zJzJb-92bYhYqHegp5fPJIXr4IvaRkSynRH68-fz_fMkL4VlHGCH2ENlRK1TDJ6WO0IYSqRjMtTtCzUm7qVijRPkUnlCkqGKcbdHsR8d7vE96b4J2ZfYo4jdjgFKFxfoJYaskEPProZ2ggQK3NeIL5V3J4TBnvMjhvZx-v8RDSWgzpFvuIrcnOp70pdgkm4-FuZ0rB19mMc3mOnowmFHhxXE_Rzy_nV2ffmssfXy_OPl02VrRqboTTnBAlJWedhrHlLWkHZrjuCOWSMmE1V25oB6P0IGHgWjsFo6XWOKDC8VP0_tB3l9PvBcrcT75YCMFESEvpleJESMJEle8elB3nXaXqv5DVGVMueIUfHoS07arTkqz0zT_0Ji25zn29oeBSab4ickA2p1IyjP0u-8nku56Sfs1Dv-ahX_PQH_JQj7w-9l2GCdz9gWMAKnh7BPWbTBizidaXe1cDo-qzq3t1cB4A_mpDuKrX_wPUNcVu</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Steele, B.N.</creator><creator>Jing Wan</creator><creator>Ku, J.P.</creator><creator>Hughes, T.J.R.</creator><creator>Taylor, C.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><author>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anastomosis, Surgical</topic><topic>Animals</topic><topic>Aorta, Thoracic - physiopathology</topic><topic>Aorta, Thoracic - surgery</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Bypasses</topic><topic>Cardiology</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Constriction, Pathologic - physiopathology</topic><topic>Coronary Artery Bypass</topic><topic>Distributed computing</topic><topic>Equations</topic><topic>Finite Element Analysis</topic><topic>Finite element methods</topic><topic>Flow rate</topic><topic>Fluid flow measurement</topic><topic>Graft Occlusion, Vascular - physiopathology</topic><topic>In vivo</topic><topic>In vivo tests</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Preoperative Care - methods</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Thoracic Arteries - physiopathology</topic><topic>Thoracic Arteries - surgery</topic><topic>Transplants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steele, B.N.</creatorcontrib><creatorcontrib>Jing Wan</creatorcontrib><creatorcontrib>Ku, J.P.</creatorcontrib><creatorcontrib>Hughes, T.J.R.</creatorcontrib><creatorcontrib>Taylor, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steele, B.N.</au><au>Jing Wan</au><au>Ku, J.P.</au><au>Hughes, T.J.R.</au><au>Taylor, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>50</volume><issue>6</issue><spage>649</spage><epage>656</epage><pages>649-656</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12814231</pmid><doi>10.1109/TBME.2003.812201</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2003-06, Vol.50 (6), p.649-656 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_ieee_primary_1203803 |
source | IEEE Xplore (Online service) |
subjects | Anastomosis, Surgical Animals Aorta, Thoracic - physiopathology Aorta, Thoracic - surgery Biological and medical sciences Biomedical materials Blood flow Blood Flow Velocity Bypasses Cardiology Computational modeling Computer Simulation Constriction, Pathologic - physiopathology Coronary Artery Bypass Distributed computing Equations Finite Element Analysis Finite element methods Flow rate Fluid flow measurement Graft Occlusion, Vascular - physiopathology In vivo In vivo tests Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Mathematical models Medical sciences Models, Cardiovascular Preoperative Care - methods Surgery Surgery, Computer-Assisted - methods Surgical implants Swine Thoracic Arteries - physiopathology Thoracic Arteries - surgery Transplants |
title | In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20validation%20of%20a%20one-dimensional%20finite-element%20method%20for%20predicting%20blood%20flow%20in%20cardiovascular%20bypass%20grafts&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Steele,%20B.N.&rft.date=2003-06-01&rft.volume=50&rft.issue=6&rft.spage=649&rft.epage=656&rft.pages=649-656&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2003.812201&rft_dat=%3Cproquest_ieee_%3E1671349503%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884358933&rft_id=info:pmid/12814231&rft_ieee_id=1203803&rfr_iscdi=true |