Loading…

In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts

Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2003-06, Vol.50 (6), p.649-656
Main Authors: Steele, B.N., Jing Wan, Ku, J.P., Hughes, T.J.R., Taylor, C.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3
cites cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3
container_end_page 656
container_issue 6
container_start_page 649
container_title IEEE transactions on biomedical engineering
container_volume 50
creator Steele, B.N.
Jing Wan
Ku, J.P.
Hughes, T.J.R.
Taylor, C.A.
description Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.
doi_str_mv 10.1109/TBME.2003.812201
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1203803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1203803</ieee_id><sourcerecordid>1671349503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</originalsourceid><addsrcrecordid>eNqF0s9rFDEUB_Agil2rd0GQIPjjMmt-ziRHLVULFS_1PGSSNzUlk6zJzJb-92bYhYqHegp5fPJIXr4IvaRkSynRH68-fz_fMkL4VlHGCH2ENlRK1TDJ6WO0IYSqRjMtTtCzUm7qVijRPkUnlCkqGKcbdHsR8d7vE96b4J2ZfYo4jdjgFKFxfoJYaskEPProZ2ggQK3NeIL5V3J4TBnvMjhvZx-v8RDSWgzpFvuIrcnOp70pdgkm4-FuZ0rB19mMc3mOnowmFHhxXE_Rzy_nV2ffmssfXy_OPl02VrRqboTTnBAlJWedhrHlLWkHZrjuCOWSMmE1V25oB6P0IGHgWjsFo6XWOKDC8VP0_tB3l9PvBcrcT75YCMFESEvpleJESMJEle8elB3nXaXqv5DVGVMueIUfHoS07arTkqz0zT_0Ji25zn29oeBSab4ickA2p1IyjP0u-8nku56Sfs1Dv-ahX_PQH_JQj7w-9l2GCdz9gWMAKnh7BPWbTBizidaXe1cDo-qzq3t1cB4A_mpDuKrX_wPUNcVu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884358933</pqid></control><display><type>article</type><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><source>IEEE Xplore (Online service)</source><creator>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</creator><creatorcontrib>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</creatorcontrib><description>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2003.812201</identifier><identifier>PMID: 12814231</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anastomosis, Surgical ; Animals ; Aorta, Thoracic - physiopathology ; Aorta, Thoracic - surgery ; Biological and medical sciences ; Biomedical materials ; Blood flow ; Blood Flow Velocity ; Bypasses ; Cardiology ; Computational modeling ; Computer Simulation ; Constriction, Pathologic - physiopathology ; Coronary Artery Bypass ; Distributed computing ; Equations ; Finite Element Analysis ; Finite element methods ; Flow rate ; Fluid flow measurement ; Graft Occlusion, Vascular - physiopathology ; In vivo ; In vivo tests ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical analysis ; Mathematical models ; Medical sciences ; Models, Cardiovascular ; Preoperative Care - methods ; Surgery ; Surgery, Computer-Assisted - methods ; Surgical implants ; Swine ; Thoracic Arteries - physiopathology ; Thoracic Arteries - surgery ; Transplants</subject><ispartof>IEEE transactions on biomedical engineering, 2003-06, Vol.50 (6), p.649-656</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</citedby><cites>FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1203803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14848704$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12814231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steele, B.N.</creatorcontrib><creatorcontrib>Jing Wan</creatorcontrib><creatorcontrib>Ku, J.P.</creatorcontrib><creatorcontrib>Hughes, T.J.R.</creatorcontrib><creatorcontrib>Taylor, C.A.</creatorcontrib><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</description><subject>Anastomosis, Surgical</subject><subject>Animals</subject><subject>Aorta, Thoracic - physiopathology</subject><subject>Aorta, Thoracic - surgery</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Bypasses</subject><subject>Cardiology</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Constriction, Pathologic - physiopathology</subject><subject>Coronary Artery Bypass</subject><subject>Distributed computing</subject><subject>Equations</subject><subject>Finite Element Analysis</subject><subject>Finite element methods</subject><subject>Flow rate</subject><subject>Fluid flow measurement</subject><subject>Graft Occlusion, Vascular - physiopathology</subject><subject>In vivo</subject><subject>In vivo tests</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Preoperative Care - methods</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Thoracic Arteries - physiopathology</subject><subject>Thoracic Arteries - surgery</subject><subject>Transplants</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0s9rFDEUB_Agil2rd0GQIPjjMmt-ziRHLVULFS_1PGSSNzUlk6zJzJb-92bYhYqHegp5fPJIXr4IvaRkSynRH68-fz_fMkL4VlHGCH2ENlRK1TDJ6WO0IYSqRjMtTtCzUm7qVijRPkUnlCkqGKcbdHsR8d7vE96b4J2ZfYo4jdjgFKFxfoJYaskEPProZ2ggQK3NeIL5V3J4TBnvMjhvZx-v8RDSWgzpFvuIrcnOp70pdgkm4-FuZ0rB19mMc3mOnowmFHhxXE_Rzy_nV2ffmssfXy_OPl02VrRqboTTnBAlJWedhrHlLWkHZrjuCOWSMmE1V25oB6P0IGHgWjsFo6XWOKDC8VP0_tB3l9PvBcrcT75YCMFESEvpleJESMJEle8elB3nXaXqv5DVGVMueIUfHoS07arTkqz0zT_0Ji25zn29oeBSab4ickA2p1IyjP0u-8nku56Sfs1Dv-ahX_PQH_JQj7w-9l2GCdz9gWMAKnh7BPWbTBizidaXe1cDo-qzq3t1cB4A_mpDuKrX_wPUNcVu</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Steele, B.N.</creator><creator>Jing Wan</creator><creator>Ku, J.P.</creator><creator>Hughes, T.J.R.</creator><creator>Taylor, C.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030601</creationdate><title>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</title><author>Steele, B.N. ; Jing Wan ; Ku, J.P. ; Hughes, T.J.R. ; Taylor, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anastomosis, Surgical</topic><topic>Animals</topic><topic>Aorta, Thoracic - physiopathology</topic><topic>Aorta, Thoracic - surgery</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Bypasses</topic><topic>Cardiology</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Constriction, Pathologic - physiopathology</topic><topic>Coronary Artery Bypass</topic><topic>Distributed computing</topic><topic>Equations</topic><topic>Finite Element Analysis</topic><topic>Finite element methods</topic><topic>Flow rate</topic><topic>Fluid flow measurement</topic><topic>Graft Occlusion, Vascular - physiopathology</topic><topic>In vivo</topic><topic>In vivo tests</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Preoperative Care - methods</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Thoracic Arteries - physiopathology</topic><topic>Thoracic Arteries - surgery</topic><topic>Transplants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steele, B.N.</creatorcontrib><creatorcontrib>Jing Wan</creatorcontrib><creatorcontrib>Ku, J.P.</creatorcontrib><creatorcontrib>Hughes, T.J.R.</creatorcontrib><creatorcontrib>Taylor, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steele, B.N.</au><au>Jing Wan</au><au>Ku, J.P.</au><au>Hughes, T.J.R.</au><au>Taylor, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2003-06-01</date><risdate>2003</risdate><volume>50</volume><issue>6</issue><spage>649</spage><epage>656</epage><pages>649-656</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments and does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described a new approach to vascular surgery planning based on solving the governing equations of blood flow in patient-specific models. A one-dimensional finite-element method was used to simulate blood flow in eight porcine thoraco-thoraco aortic bypass models. The predicted flow rate was compared to in vivo data obtained using cine phase-contrast magnetic resonance imaging. The mean absolute difference between computed and measured flow distribution in the stenosed aorta was found to be 4.2% with the maximum difference of 10.6% and a minimum difference of 0.4%. Furthermore, the sensitivity of the flow rate and distribution with respect to stenosis and branch losses were quantified.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>12814231</pmid><doi>10.1109/TBME.2003.812201</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2003-06, Vol.50 (6), p.649-656
issn 0018-9294
1558-2531
language eng
recordid cdi_ieee_primary_1203803
source IEEE Xplore (Online service)
subjects Anastomosis, Surgical
Animals
Aorta, Thoracic - physiopathology
Aorta, Thoracic - surgery
Biological and medical sciences
Biomedical materials
Blood flow
Blood Flow Velocity
Bypasses
Cardiology
Computational modeling
Computer Simulation
Constriction, Pathologic - physiopathology
Coronary Artery Bypass
Distributed computing
Equations
Finite Element Analysis
Finite element methods
Flow rate
Fluid flow measurement
Graft Occlusion, Vascular - physiopathology
In vivo
In vivo tests
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Mathematical models
Medical sciences
Models, Cardiovascular
Preoperative Care - methods
Surgery
Surgery, Computer-Assisted - methods
Surgical implants
Swine
Thoracic Arteries - physiopathology
Thoracic Arteries - surgery
Transplants
title In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20validation%20of%20a%20one-dimensional%20finite-element%20method%20for%20predicting%20blood%20flow%20in%20cardiovascular%20bypass%20grafts&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Steele,%20B.N.&rft.date=2003-06-01&rft.volume=50&rft.issue=6&rft.spage=649&rft.epage=656&rft.pages=649-656&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2003.812201&rft_dat=%3Cproquest_ieee_%3E1671349503%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-4d93008553279ef63606b2a3970135124c938db6ba89b5eb399d8efc1cade14d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884358933&rft_id=info:pmid/12814231&rft_ieee_id=1203803&rfr_iscdi=true