Loading…
A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques
This paper describes the first implementation of an adaptable knowledge-based neural network (AKBNN) model in a high efficiency class F MMIC (monolithic microwave integrated circuit) amplifier design at Ka-band in a 0.25 /spl mu/m GaAs PHEMT technology. A single-stage amplifier based upon the AKBNN...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 618 vol.1 |
container_issue | |
container_start_page | 615 |
container_title | |
container_volume | 1 |
creator | Reece, M.A. White, C. Penn, J. Davis, B. Bayne, M.Jr Richardson, N. Thompson, W.I.I. Walker, L. |
description | This paper describes the first implementation of an adaptable knowledge-based neural network (AKBNN) model in a high efficiency class F MMIC (monolithic microwave integrated circuit) amplifier design at Ka-band in a 0.25 /spl mu/m GaAs PHEMT technology. A single-stage amplifier based upon the AKBNN model employed shows comparable results to measured performance of a gain of 7.5 dB, a PAE of 35%, and an output power of 17 dBm. |
doi_str_mv | 10.1109/MWSYM.2003.1211014 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1211014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1211014</ieee_id><sourcerecordid>1211014</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-f1483bd28a529d1d3b1aefc505edeeea1b22da48f80531386ee9dcc9c12ea9033</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0eEqX0B2DjH0jxtePEXlYVj4pGLAABq-omvimmblriVBV8PUFUGmmk0ZlZDGOXIMYAwl4Xr0_vxVgKocYg-wTSIzaQOs-SXEJ2zEY2N6KXyjOr1Qkb9IRNslS_nbHzGD-FENpANmDNhD9gUmLjeBUwRn7Li2I25bjeBl97armj6JcN33U--B_fLDk63HZYBuKrZrMP5JbUD0RyvKFdi6G3br9pV3y9cRT-Gh1VH43_2lG8YKc1hkijgw_Zy-3N8_Q-mT_ezaaTeeIhV11SQ2pU6aRBLa0Dp0pAqistNDkiQiildJia2gitQJmMyLqqshVIQiuUGrKr_13f44tt69fYfi8OV6lfqbFdXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques</title><source>IEEE Xplore All Conference Series</source><creator>Reece, M.A. ; White, C. ; Penn, J. ; Davis, B. ; Bayne, M.Jr ; Richardson, N. ; Thompson, W.I.I. ; Walker, L.</creator><creatorcontrib>Reece, M.A. ; White, C. ; Penn, J. ; Davis, B. ; Bayne, M.Jr ; Richardson, N. ; Thompson, W.I.I. ; Walker, L.</creatorcontrib><description>This paper describes the first implementation of an adaptable knowledge-based neural network (AKBNN) model in a high efficiency class F MMIC (monolithic microwave integrated circuit) amplifier design at Ka-band in a 0.25 /spl mu/m GaAs PHEMT technology. A single-stage amplifier based upon the AKBNN model employed shows comparable results to measured performance of a gain of 7.5 dB, a PAE of 35%, and an output power of 17 dBm.</description><identifier>ISSN: 0149-645X</identifier><identifier>ISBN: 9780780376953</identifier><identifier>ISBN: 0780376951</identifier><identifier>EISSN: 2576-7216</identifier><identifier>DOI: 10.1109/MWSYM.2003.1211014</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gallium arsenide ; Integrated circuit modeling ; Integrated circuit technology ; Microwave amplifiers ; Microwave integrated circuits ; MMICs ; Monolithic integrated circuits ; Neural networks ; PHEMTs ; Power amplifiers</subject><ispartof>IEEE MTT-S International Microwave Symposium Digest, 2003, 2003, Vol.1, p.615-618 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1211014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1211014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reece, M.A.</creatorcontrib><creatorcontrib>White, C.</creatorcontrib><creatorcontrib>Penn, J.</creatorcontrib><creatorcontrib>Davis, B.</creatorcontrib><creatorcontrib>Bayne, M.Jr</creatorcontrib><creatorcontrib>Richardson, N.</creatorcontrib><creatorcontrib>Thompson, W.I.I.</creatorcontrib><creatorcontrib>Walker, L.</creatorcontrib><title>A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques</title><title>IEEE MTT-S International Microwave Symposium Digest, 2003</title><addtitle>MWSYM</addtitle><description>This paper describes the first implementation of an adaptable knowledge-based neural network (AKBNN) model in a high efficiency class F MMIC (monolithic microwave integrated circuit) amplifier design at Ka-band in a 0.25 /spl mu/m GaAs PHEMT technology. A single-stage amplifier based upon the AKBNN model employed shows comparable results to measured performance of a gain of 7.5 dB, a PAE of 35%, and an output power of 17 dBm.</description><subject>Gallium arsenide</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuit technology</subject><subject>Microwave amplifiers</subject><subject>Microwave integrated circuits</subject><subject>MMICs</subject><subject>Monolithic integrated circuits</subject><subject>Neural networks</subject><subject>PHEMTs</subject><subject>Power amplifiers</subject><issn>0149-645X</issn><issn>2576-7216</issn><isbn>9780780376953</isbn><isbn>0780376951</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURC0eEqX0B2DjH0jxtePEXlYVj4pGLAABq-omvimmblriVBV8PUFUGmmk0ZlZDGOXIMYAwl4Xr0_vxVgKocYg-wTSIzaQOs-SXEJ2zEY2N6KXyjOr1Qkb9IRNslS_nbHzGD-FENpANmDNhD9gUmLjeBUwRn7Li2I25bjeBl97armj6JcN33U--B_fLDk63HZYBuKrZrMP5JbUD0RyvKFdi6G3br9pV3y9cRT-Gh1VH43_2lG8YKc1hkijgw_Zy-3N8_Q-mT_ezaaTeeIhV11SQ2pU6aRBLa0Dp0pAqistNDkiQiildJia2gitQJmMyLqqshVIQiuUGrKr_13f44tt69fYfi8OV6lfqbFdXA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Reece, M.A.</creator><creator>White, C.</creator><creator>Penn, J.</creator><creator>Davis, B.</creator><creator>Bayne, M.Jr</creator><creator>Richardson, N.</creator><creator>Thompson, W.I.I.</creator><creator>Walker, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques</title><author>Reece, M.A. ; White, C. ; Penn, J. ; Davis, B. ; Bayne, M.Jr ; Richardson, N. ; Thompson, W.I.I. ; Walker, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-f1483bd28a529d1d3b1aefc505edeeea1b22da48f80531386ee9dcc9c12ea9033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Gallium arsenide</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuit technology</topic><topic>Microwave amplifiers</topic><topic>Microwave integrated circuits</topic><topic>MMICs</topic><topic>Monolithic integrated circuits</topic><topic>Neural networks</topic><topic>PHEMTs</topic><topic>Power amplifiers</topic><toplevel>online_resources</toplevel><creatorcontrib>Reece, M.A.</creatorcontrib><creatorcontrib>White, C.</creatorcontrib><creatorcontrib>Penn, J.</creatorcontrib><creatorcontrib>Davis, B.</creatorcontrib><creatorcontrib>Bayne, M.Jr</creatorcontrib><creatorcontrib>Richardson, N.</creatorcontrib><creatorcontrib>Thompson, W.I.I.</creatorcontrib><creatorcontrib>Walker, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reece, M.A.</au><au>White, C.</au><au>Penn, J.</au><au>Davis, B.</au><au>Bayne, M.Jr</au><au>Richardson, N.</au><au>Thompson, W.I.I.</au><au>Walker, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques</atitle><btitle>IEEE MTT-S International Microwave Symposium Digest, 2003</btitle><stitle>MWSYM</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>615</spage><epage>618 vol.1</epage><pages>615-618 vol.1</pages><issn>0149-645X</issn><eissn>2576-7216</eissn><isbn>9780780376953</isbn><isbn>0780376951</isbn><abstract>This paper describes the first implementation of an adaptable knowledge-based neural network (AKBNN) model in a high efficiency class F MMIC (monolithic microwave integrated circuit) amplifier design at Ka-band in a 0.25 /spl mu/m GaAs PHEMT technology. A single-stage amplifier based upon the AKBNN model employed shows comparable results to measured performance of a gain of 7.5 dB, a PAE of 35%, and an output power of 17 dBm.</abstract><pub>IEEE</pub><doi>10.1109/MWSYM.2003.1211014</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0149-645X |
ispartof | IEEE MTT-S International Microwave Symposium Digest, 2003, 2003, Vol.1, p.615-618 vol.1 |
issn | 0149-645X 2576-7216 |
language | eng |
recordid | cdi_ieee_primary_1211014 |
source | IEEE Xplore All Conference Series |
subjects | Gallium arsenide Integrated circuit modeling Integrated circuit technology Microwave amplifiers Microwave integrated circuits MMICs Monolithic integrated circuits Neural networks PHEMTs Power amplifiers |
title | A Ka-band class F MMIC amplifier design utilizing adaptable knowledge-based neural network modeling techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Ka-band%20class%20F%20MMIC%20amplifier%20design%20utilizing%20adaptable%20knowledge-based%20neural%20network%20modeling%20techniques&rft.btitle=IEEE%20MTT-S%20International%20Microwave%20Symposium%20Digest,%202003&rft.au=Reece,%20M.A.&rft.date=2003&rft.volume=1&rft.spage=615&rft.epage=618%20vol.1&rft.pages=615-618%20vol.1&rft.issn=0149-645X&rft.eissn=2576-7216&rft.isbn=9780780376953&rft.isbn_list=0780376951&rft_id=info:doi/10.1109/MWSYM.2003.1211014&rft_dat=%3Cieee_CHZPO%3E1211014%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-f1483bd28a529d1d3b1aefc505edeeea1b22da48f80531386ee9dcc9c12ea9033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1211014&rfr_iscdi=true |