Loading…
Robust vision based lane tracking using multiple cues and particle filtering
One of the more startling effects of road related accidents is the economic and social burden they cause. Between 750,000 and 880,000 people died globally in road related accidents in 1999 alone, with an estimated cost of US518 billion. One way of combating this problem is to develop Intelligent Veh...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-e1211323cac84ff1484b3945a36c8376ec7ab6e6e3bc06634b08e244aba8899c3 |
---|---|
cites | |
container_end_page | 563 |
container_issue | |
container_start_page | 558 |
container_title | |
container_volume | |
creator | Apostoloff, N. Zelinsky, A. |
description | One of the more startling effects of road related accidents is the economic and social burden they cause. Between 750,000 and 880,000 people died globally in road related accidents in 1999 alone, with an estimated cost of US518 billion. One way of combating this problem is to develop Intelligent Vehicles that are self-aware and act to increase the safety of the transportation system. This paper presents the development and application of a novel multiple-cue visual lane tracking system for research into Intelligent Vehicles (IV). Particle filtering and cue fusion technologies form the basis of the lane tracking system which robustly handles several of the problems faced by previous lane tracking systems such as shadows on the road, unreliable lane markings, dramatic lighting changes and discontinuous changes in road characteristics and types. Experimental results of the lane tracking system running at 15 Hz will be discussed, focusing on the particle filter and cue fusion technology used. |
doi_str_mv | 10.1109/IVS.2003.1212973 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1212973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1212973</ieee_id><sourcerecordid>1212973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-e1211323cac84ff1484b3945a36c8376ec7ab6e6e3bc06634b08e244aba8899c3</originalsourceid><addsrcrecordid>eNotT8tqwzAQFJRCS-p7oRf9gF1Jq-hxLKGPQKDQ1zWslHVR6zjGkgv9-7okwzADw7LMMHYtRSOl8Lfrj9dGCQGNVFJ5C2es8taJmWCddnDBqpy_xAy91EbbS7Z5OYQpF_6Tcjr0PGCmHe-wJ15GjN-p_-RT_tf91JU0dMTjRJljv-MDjiXFOWlTV2icj67YeYtdpurkC_b-cP-2eqo3z4_r1d2mjsq5UtPcToKCiNHptpXa6QBeLxFMdGANRYvBkCEIURgDOghHSmsM6Jz3ERbs5vg3EdF2GNMex9_taTP8AZh3TKs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust vision based lane tracking using multiple cues and particle filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Apostoloff, N. ; Zelinsky, A.</creator><creatorcontrib>Apostoloff, N. ; Zelinsky, A.</creatorcontrib><description>One of the more startling effects of road related accidents is the economic and social burden they cause. Between 750,000 and 880,000 people died globally in road related accidents in 1999 alone, with an estimated cost of US518 billion. One way of combating this problem is to develop Intelligent Vehicles that are self-aware and act to increase the safety of the transportation system. This paper presents the development and application of a novel multiple-cue visual lane tracking system for research into Intelligent Vehicles (IV). Particle filtering and cue fusion technologies form the basis of the lane tracking system which robustly handles several of the problems faced by previous lane tracking systems such as shadows on the road, unreliable lane markings, dramatic lighting changes and discontinuous changes in road characteristics and types. Experimental results of the lane tracking system running at 15 Hz will be discussed, focusing on the particle filter and cue fusion technology used.</description><identifier>ISBN: 9780780378483</identifier><identifier>ISBN: 0780378482</identifier><identifier>DOI: 10.1109/IVS.2003.1212973</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Cameras ; Fatigue ; Filtering ; Intelligent vehicles ; Particle tracking ; Remotely operated vehicles ; Road vehicles ; Robustness ; Vehicle driving</subject><ispartof>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003, p.558-563</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-e1211323cac84ff1484b3945a36c8376ec7ab6e6e3bc06634b08e244aba8899c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1212973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1212973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apostoloff, N.</creatorcontrib><creatorcontrib>Zelinsky, A.</creatorcontrib><title>Robust vision based lane tracking using multiple cues and particle filtering</title><title>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683)</title><addtitle>IVS</addtitle><description>One of the more startling effects of road related accidents is the economic and social burden they cause. Between 750,000 and 880,000 people died globally in road related accidents in 1999 alone, with an estimated cost of US518 billion. One way of combating this problem is to develop Intelligent Vehicles that are self-aware and act to increase the safety of the transportation system. This paper presents the development and application of a novel multiple-cue visual lane tracking system for research into Intelligent Vehicles (IV). Particle filtering and cue fusion technologies form the basis of the lane tracking system which robustly handles several of the problems faced by previous lane tracking systems such as shadows on the road, unreliable lane markings, dramatic lighting changes and discontinuous changes in road characteristics and types. Experimental results of the lane tracking system running at 15 Hz will be discussed, focusing on the particle filter and cue fusion technology used.</description><subject>Australia</subject><subject>Cameras</subject><subject>Fatigue</subject><subject>Filtering</subject><subject>Intelligent vehicles</subject><subject>Particle tracking</subject><subject>Remotely operated vehicles</subject><subject>Road vehicles</subject><subject>Robustness</subject><subject>Vehicle driving</subject><isbn>9780780378483</isbn><isbn>0780378482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tqwzAQFJRCS-p7oRf9gF1Jq-hxLKGPQKDQ1zWslHVR6zjGkgv9-7okwzADw7LMMHYtRSOl8Lfrj9dGCQGNVFJ5C2es8taJmWCddnDBqpy_xAy91EbbS7Z5OYQpF_6Tcjr0PGCmHe-wJ15GjN-p_-RT_tf91JU0dMTjRJljv-MDjiXFOWlTV2icj67YeYtdpurkC_b-cP-2eqo3z4_r1d2mjsq5UtPcToKCiNHptpXa6QBeLxFMdGANRYvBkCEIURgDOghHSmsM6Jz3ERbs5vg3EdF2GNMex9_taTP8AZh3TKs</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Apostoloff, N.</creator><creator>Zelinsky, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Robust vision based lane tracking using multiple cues and particle filtering</title><author>Apostoloff, N. ; Zelinsky, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-e1211323cac84ff1484b3945a36c8376ec7ab6e6e3bc06634b08e244aba8899c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Australia</topic><topic>Cameras</topic><topic>Fatigue</topic><topic>Filtering</topic><topic>Intelligent vehicles</topic><topic>Particle tracking</topic><topic>Remotely operated vehicles</topic><topic>Road vehicles</topic><topic>Robustness</topic><topic>Vehicle driving</topic><toplevel>online_resources</toplevel><creatorcontrib>Apostoloff, N.</creatorcontrib><creatorcontrib>Zelinsky, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apostoloff, N.</au><au>Zelinsky, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust vision based lane tracking using multiple cues and particle filtering</atitle><btitle>IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683)</btitle><stitle>IVS</stitle><date>2003</date><risdate>2003</risdate><spage>558</spage><epage>563</epage><pages>558-563</pages><isbn>9780780378483</isbn><isbn>0780378482</isbn><abstract>One of the more startling effects of road related accidents is the economic and social burden they cause. Between 750,000 and 880,000 people died globally in road related accidents in 1999 alone, with an estimated cost of US518 billion. One way of combating this problem is to develop Intelligent Vehicles that are self-aware and act to increase the safety of the transportation system. This paper presents the development and application of a novel multiple-cue visual lane tracking system for research into Intelligent Vehicles (IV). Particle filtering and cue fusion technologies form the basis of the lane tracking system which robustly handles several of the problems faced by previous lane tracking systems such as shadows on the road, unreliable lane markings, dramatic lighting changes and discontinuous changes in road characteristics and types. Experimental results of the lane tracking system running at 15 Hz will be discussed, focusing on the particle filter and cue fusion technology used.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2003.1212973</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780378483 |
ispartof | IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683), 2003, p.558-563 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1212973 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Cameras Fatigue Filtering Intelligent vehicles Particle tracking Remotely operated vehicles Road vehicles Robustness Vehicle driving |
title | Robust vision based lane tracking using multiple cues and particle filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20vision%20based%20lane%20tracking%20using%20multiple%20cues%20and%20particle%20filtering&rft.btitle=IEEE%20IV2003%20Intelligent%20Vehicles%20Symposium.%20Proceedings%20(Cat.%20No.03TH8683)&rft.au=Apostoloff,%20N.&rft.date=2003&rft.spage=558&rft.epage=563&rft.pages=558-563&rft.isbn=9780780378483&rft.isbn_list=0780378482&rft_id=info:doi/10.1109/IVS.2003.1212973&rft_dat=%3Cieee_6IE%3E1212973%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-e1211323cac84ff1484b3945a36c8376ec7ab6e6e3bc06634b08e244aba8899c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1212973&rfr_iscdi=true |