Loading…

Spatio-temporal data mining with expected distribution domain generalization graphs

We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. W...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamilton, H.J., Liqiang Geng, Findlater, L., Randall, D.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 191
container_issue
container_start_page 181
container_title
container_volume
creator Hamilton, H.J.
Liqiang Geng
Findlater, L.
Randall, D.J.
description We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranked possible summaries according to current expectations, and then allow the user to adjust these expectations.
doi_str_mv 10.1109/TIME.2003.1214895
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1214895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1214895</ieee_id><sourcerecordid>1214895</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18e97345d1d6c3b6c1ee94b4c0e3e92bda050fceb12d7156cbd38b06f74fa6253</originalsourceid><addsrcrecordid>eNotUMlOwzAUtFgkSukHIC7-AQc_b4mPqCpQqYhDy7my45fUqFmUGLF8PRF0LiPNdhhCboFnANze79Yvq0xwLjMQoAqrz8hMSCmYUaY4J9c8N1aDncwLMgMtOQMJcEUW4_jOJ0hrjBYzst32LsWOJWz6bnBHGlxytIltbGv6GdOB4lePZcJAQxzTEP3HFG9p6BoXW1pji1Mr_rg_tR5cfxhvyGXljiMuTjwnb4-r3fKZbV6f1suHDYuQ68SgQJtLpQMEU0pvSkC0yquSo0QrfHBc86pEDyLkoE3pgyw8N1WuKmeElnNy978bEXHfD7Fxw_f-9If8BYjKU_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spatio-temporal data mining with expected distribution domain generalization graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hamilton, H.J. ; Liqiang Geng ; Findlater, L. ; Randall, D.J.</creator><creatorcontrib>Hamilton, H.J. ; Liqiang Geng ; Findlater, L. ; Randall, D.J.</creatorcontrib><description>We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranked possible summaries according to current expectations, and then allow the user to adjust these expectations.</description><identifier>ISSN: 1530-1311</identifier><identifier>ISBN: 0769519121</identifier><identifier>ISBN: 9780769519128</identifier><identifier>EISSN: 2332-6468</identifier><identifier>DOI: 10.1109/TIME.2003.1214895</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calendars ; Cities and towns ; Computer science ; Cultural differences ; Data analysis ; Data mining ; Data visualization ; Earth ; Information analysis ; Sun</subject><ispartof>10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings, 2003, p.181-191</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1214895$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54529,54894,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1214895$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Findlater, L.</creatorcontrib><creatorcontrib>Randall, D.J.</creatorcontrib><title>Spatio-temporal data mining with expected distribution domain generalization graphs</title><title>10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings</title><addtitle>TIME</addtitle><description>We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranked possible summaries according to current expectations, and then allow the user to adjust these expectations.</description><subject>Calendars</subject><subject>Cities and towns</subject><subject>Computer science</subject><subject>Cultural differences</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Earth</subject><subject>Information analysis</subject><subject>Sun</subject><issn>1530-1311</issn><issn>2332-6468</issn><isbn>0769519121</isbn><isbn>9780769519128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlOwzAUtFgkSukHIC7-AQc_b4mPqCpQqYhDy7my45fUqFmUGLF8PRF0LiPNdhhCboFnANze79Yvq0xwLjMQoAqrz8hMSCmYUaY4J9c8N1aDncwLMgMtOQMJcEUW4_jOJ0hrjBYzst32LsWOJWz6bnBHGlxytIltbGv6GdOB4lePZcJAQxzTEP3HFG9p6BoXW1pji1Mr_rg_tR5cfxhvyGXljiMuTjwnb4-r3fKZbV6f1suHDYuQ68SgQJtLpQMEU0pvSkC0yquSo0QrfHBc86pEDyLkoE3pgyw8N1WuKmeElnNy978bEXHfD7Fxw_f-9If8BYjKU_I</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Hamilton, H.J.</creator><creator>Liqiang Geng</creator><creator>Findlater, L.</creator><creator>Randall, D.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Spatio-temporal data mining with expected distribution domain generalization graphs</title><author>Hamilton, H.J. ; Liqiang Geng ; Findlater, L. ; Randall, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18e97345d1d6c3b6c1ee94b4c0e3e92bda050fceb12d7156cbd38b06f74fa6253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Calendars</topic><topic>Cities and towns</topic><topic>Computer science</topic><topic>Cultural differences</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Earth</topic><topic>Information analysis</topic><topic>Sun</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, H.J.</creatorcontrib><creatorcontrib>Liqiang Geng</creatorcontrib><creatorcontrib>Findlater, L.</creatorcontrib><creatorcontrib>Randall, D.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamilton, H.J.</au><au>Liqiang Geng</au><au>Findlater, L.</au><au>Randall, D.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spatio-temporal data mining with expected distribution domain generalization graphs</atitle><btitle>10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings</btitle><stitle>TIME</stitle><date>2003</date><risdate>2003</risdate><spage>181</spage><epage>191</epage><pages>181-191</pages><issn>1530-1311</issn><eissn>2332-6468</eissn><isbn>0769519121</isbn><isbn>9780769519128</isbn><abstract>We describe a method for spatio-temporal data mining based on expected distribution domain generalization (ExGen) graphs. Using familiar calendar and geographical concepts, such as workdays, weeks, climatic regions, and countries, spatio-temporal data can be aggregated into summaries in many ways. We automatically search for a summary with a distribution that is anomalous, i.e., far from user expectations. We repeatedly ranked possible summaries according to current expectations, and then allow the user to adjust these expectations.</abstract><pub>IEEE</pub><doi>10.1109/TIME.2003.1214895</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1311
ispartof 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings, 2003, p.181-191
issn 1530-1311
2332-6468
language eng
recordid cdi_ieee_primary_1214895
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calendars
Cities and towns
Computer science
Cultural differences
Data analysis
Data mining
Data visualization
Earth
Information analysis
Sun
title Spatio-temporal data mining with expected distribution domain generalization graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spatio-temporal%20data%20mining%20with%20expected%20distribution%20domain%20generalization%20graphs&rft.btitle=10th%20International%20Symposium%20on%20Temporal%20Representation%20and%20Reasoning,%202003%20and%20Fourth%20International%20Conference%20on%20Temporal%20Logic.%20Proceedings&rft.au=Hamilton,%20H.J.&rft.date=2003&rft.spage=181&rft.epage=191&rft.pages=181-191&rft.issn=1530-1311&rft.eissn=2332-6468&rft.isbn=0769519121&rft.isbn_list=9780769519128&rft_id=info:doi/10.1109/TIME.2003.1214895&rft_dat=%3Cieee_6IE%3E1214895%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-18e97345d1d6c3b6c1ee94b4c0e3e92bda050fceb12d7156cbd38b06f74fa6253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1214895&rfr_iscdi=true