Loading…
The EE-method, an evolutionary engineering developer tool: neural net case study
Summary form only given. Evolutionary engineering (EE) challenge is to prove that it is possible to build systems (i.e. solutions) without going through any design process. Evolutionary engineering is defined to be "the art of using evolutionary algorithms approach such as genetic algorithms to...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary form only given. Evolutionary engineering (EE) challenge is to prove that it is possible to build systems (i.e. solutions) without going through any design process. Evolutionary engineering is defined to be "the art of using evolutionary algorithms approach such as genetic algorithms to build complex systems". Our main goal is to show that the EE-method is a good setting. We show step by step, using the EE-method, how to build a neural net based system. The EE-method can be viewed as just a GP appliance. The need of a well-specified approach determines the necessity for such a method. To bring the EE-method into operation, we had implemented software to build/evolve neural net-based systems. As an example, we present an evolved neural net Xor. |
---|---|
DOI: | 10.1109/AICCSA.2003.1227552 |