Loading…

Quantum-dot cellular automata: an architecture for molecular computing

The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic...

Full description

Saved in:
Bibliographic Details
Main Authors: Blair, E.P., Lent, C.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 18
container_issue
container_start_page 14
container_title
container_volume
creator Blair, E.P.
Lent, C.S.
description The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.
doi_str_mv 10.1109/SISPAD.2003.1233626
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1233626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1233626</ieee_id><sourcerecordid>1233626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3</originalsourceid><addsrcrecordid>eNotj81KAzEURgMiqLVP0E1eYMabuZNkxl2pVgsFleq63GZudGR-SiZZ-PYW7dl8m8MHR4iFglwpqO92m93r8iEvADBXBaIpzIW4AVsB2qow6krMp-kbTmBtdKWvxfot0RBTnzVjlI67LnUUJKU49hTpXtIgKbivNrKLKbD0Y5D92LH789zYH1Nsh89bcempm3h-3pn4WD--r56z7cvTZrXcZq2yOmakdOOZkK1nNOD1wVs02lhrXW1LgIpMc0BTKiwNlNjQySwMamVtzcA4E4v_35aZ98fQ9hR-9udU_AXYC0qD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantum-dot cellular automata: an architecture for molecular computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blair, E.P. ; Lent, C.S.</creator><creatorcontrib>Blair, E.P. ; Lent, C.S.</creatorcontrib><description>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</description><identifier>ISBN: 0780378261</identifier><identifier>ISBN: 9780780378261</identifier><identifier>DOI: 10.1109/SISPAD.2003.1233626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Clocks ; Computer architecture ; Logic devices ; Molecular computing ; Nanostructures ; Quantum cellular automata ; Quantum computing ; Quantum dots ; Wires</subject><ispartof>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, 2003, p.14-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1233626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1233626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blair, E.P.</creatorcontrib><creatorcontrib>Lent, C.S.</creatorcontrib><title>Quantum-dot cellular automata: an architecture for molecular computing</title><title>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003</title><addtitle>SISPAD</addtitle><description>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</description><subject>Circuits</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>Logic devices</subject><subject>Molecular computing</subject><subject>Nanostructures</subject><subject>Quantum cellular automata</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Wires</subject><isbn>0780378261</isbn><isbn>9780780378261</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMiqLVP0E1eYMabuZNkxl2pVgsFleq63GZudGR-SiZZ-PYW7dl8m8MHR4iFglwpqO92m93r8iEvADBXBaIpzIW4AVsB2qow6krMp-kbTmBtdKWvxfot0RBTnzVjlI67LnUUJKU49hTpXtIgKbivNrKLKbD0Y5D92LH789zYH1Nsh89bcempm3h-3pn4WD--r56z7cvTZrXcZq2yOmakdOOZkK1nNOD1wVs02lhrXW1LgIpMc0BTKiwNlNjQySwMamVtzcA4E4v_35aZ98fQ9hR-9udU_AXYC0qD</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Blair, E.P.</creator><creator>Lent, C.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Quantum-dot cellular automata: an architecture for molecular computing</title><author>Blair, E.P. ; Lent, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>Logic devices</topic><topic>Molecular computing</topic><topic>Nanostructures</topic><topic>Quantum cellular automata</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Blair, E.P.</creatorcontrib><creatorcontrib>Lent, C.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blair, E.P.</au><au>Lent, C.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantum-dot cellular automata: an architecture for molecular computing</atitle><btitle>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003</btitle><stitle>SISPAD</stitle><date>2003</date><risdate>2003</risdate><spage>14</spage><epage>18</epage><pages>14-18</pages><isbn>0780378261</isbn><isbn>9780780378261</isbn><abstract>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</abstract><pub>IEEE</pub><doi>10.1109/SISPAD.2003.1233626</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780378261
ispartof International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, 2003, p.14-18
issn
language eng
recordid cdi_ieee_primary_1233626
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Circuits
Clocks
Computer architecture
Logic devices
Molecular computing
Nanostructures
Quantum cellular automata
Quantum computing
Quantum dots
Wires
title Quantum-dot cellular automata: an architecture for molecular computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantum-dot%20cellular%20automata:%20an%20architecture%20for%20molecular%20computing&rft.btitle=International%20Conference%20on%20Simulation%20of%20Semiconductor%20Processes%20and%20Devices,%202003.%20SISPAD%202003&rft.au=Blair,%20E.P.&rft.date=2003&rft.spage=14&rft.epage=18&rft.pages=14-18&rft.isbn=0780378261&rft.isbn_list=9780780378261&rft_id=info:doi/10.1109/SISPAD.2003.1233626&rft_dat=%3Cieee_6IE%3E1233626%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1233626&rfr_iscdi=true