Loading…
Quantum-dot cellular automata: an architecture for molecular computing
The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18 |
container_issue | |
container_start_page | 14 |
container_title | |
container_volume | |
creator | Blair, E.P. Lent, C.S. |
description | The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture. |
doi_str_mv | 10.1109/SISPAD.2003.1233626 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1233626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1233626</ieee_id><sourcerecordid>1233626</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3</originalsourceid><addsrcrecordid>eNotj81KAzEURgMiqLVP0E1eYMabuZNkxl2pVgsFleq63GZudGR-SiZZ-PYW7dl8m8MHR4iFglwpqO92m93r8iEvADBXBaIpzIW4AVsB2qow6krMp-kbTmBtdKWvxfot0RBTnzVjlI67LnUUJKU49hTpXtIgKbivNrKLKbD0Y5D92LH789zYH1Nsh89bcempm3h-3pn4WD--r56z7cvTZrXcZq2yOmakdOOZkK1nNOD1wVs02lhrXW1LgIpMc0BTKiwNlNjQySwMamVtzcA4E4v_35aZ98fQ9hR-9udU_AXYC0qD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Quantum-dot cellular automata: an architecture for molecular computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Blair, E.P. ; Lent, C.S.</creator><creatorcontrib>Blair, E.P. ; Lent, C.S.</creatorcontrib><description>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</description><identifier>ISBN: 0780378261</identifier><identifier>ISBN: 9780780378261</identifier><identifier>DOI: 10.1109/SISPAD.2003.1233626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuits ; Clocks ; Computer architecture ; Logic devices ; Molecular computing ; Nanostructures ; Quantum cellular automata ; Quantum computing ; Quantum dots ; Wires</subject><ispartof>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, 2003, p.14-18</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1233626$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1233626$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blair, E.P.</creatorcontrib><creatorcontrib>Lent, C.S.</creatorcontrib><title>Quantum-dot cellular automata: an architecture for molecular computing</title><title>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003</title><addtitle>SISPAD</addtitle><description>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</description><subject>Circuits</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>Logic devices</subject><subject>Molecular computing</subject><subject>Nanostructures</subject><subject>Quantum cellular automata</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Wires</subject><isbn>0780378261</isbn><isbn>9780780378261</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMiqLVP0E1eYMabuZNkxl2pVgsFleq63GZudGR-SiZZ-PYW7dl8m8MHR4iFglwpqO92m93r8iEvADBXBaIpzIW4AVsB2qow6krMp-kbTmBtdKWvxfot0RBTnzVjlI67LnUUJKU49hTpXtIgKbivNrKLKbD0Y5D92LH789zYH1Nsh89bcempm3h-3pn4WD--r56z7cvTZrXcZq2yOmakdOOZkK1nNOD1wVs02lhrXW1LgIpMc0BTKiwNlNjQySwMamVtzcA4E4v_35aZ98fQ9hR-9udU_AXYC0qD</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Blair, E.P.</creator><creator>Lent, C.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Quantum-dot cellular automata: an architecture for molecular computing</title><author>Blair, E.P. ; Lent, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Circuits</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>Logic devices</topic><topic>Molecular computing</topic><topic>Nanostructures</topic><topic>Quantum cellular automata</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Blair, E.P.</creatorcontrib><creatorcontrib>Lent, C.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blair, E.P.</au><au>Lent, C.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Quantum-dot cellular automata: an architecture for molecular computing</atitle><btitle>International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003</btitle><stitle>SISPAD</stitle><date>2003</date><risdate>2003</risdate><spage>14</spage><epage>18</epage><pages>14-18</pages><isbn>0780378261</isbn><isbn>9780780378261</isbn><abstract>The quantum-dot cellular automata (QCA) paradigm is a revolutionary approach to molecular-scale computing which represents binary information using the charge configuration of nanostructures in lieu of current switching devices. The basic building-block of QCA devices is the QCA cell. Electrostatic interaction between neighboring cells allows the design of QCA wires, logic devices and even simple microprocessors. The geometry of molecular six-dot QCA cells enables the clocking of QCA devices via an electric field generated by a layout of clocking wires. Thus, precise control over the timing and direction of data flow in QCA circuits is possible. The design of QCA circuits now lies not only in the logic structure of the cells, but also in the layout of clocking wires. We discuss the clocking of QCA devices and connect layout to architecture.</abstract><pub>IEEE</pub><doi>10.1109/SISPAD.2003.1233626</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780378261 |
ispartof | International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003, 2003, p.14-18 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1233626 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Circuits Clocks Computer architecture Logic devices Molecular computing Nanostructures Quantum cellular automata Quantum computing Quantum dots Wires |
title | Quantum-dot cellular automata: an architecture for molecular computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A52%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Quantum-dot%20cellular%20automata:%20an%20architecture%20for%20molecular%20computing&rft.btitle=International%20Conference%20on%20Simulation%20of%20Semiconductor%20Processes%20and%20Devices,%202003.%20SISPAD%202003&rft.au=Blair,%20E.P.&rft.date=2003&rft.spage=14&rft.epage=18&rft.pages=14-18&rft.isbn=0780378261&rft.isbn_list=9780780378261&rft_id=info:doi/10.1109/SISPAD.2003.1233626&rft_dat=%3Cieee_6IE%3E1233626%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a15dfea3e7fe360f5bf73656777c974008a6db3641346043dae7f26351779e0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1233626&rfr_iscdi=true |