Loading…
Semantic feature layers in content-based image retrieval: implementation of human world features
The major problem of most CBIR approaches is bad quality in terms of recall and precision. As a major reason for this, the semantic gap between high-level concepts and low-level features has been identified. In this paper we describe an approach to reduce the impact of the semantic gap by deriving h...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The major problem of most CBIR approaches is bad quality in terms of recall and precision. As a major reason for this, the semantic gap between high-level concepts and low-level features has been identified. In this paper we describe an approach to reduce the impact of the semantic gap by deriving high level (semantic) from low-level features and using these features to improve the quality of CBIR queries. This concept is implemented for a high-level feature class that describes human world properties and evaluated in 300 queries. Results show that using those high-level features improves the quality of result sets by balancing recall and precision. |
---|---|
DOI: | 10.1109/ICARCV.2002.1234816 |