Loading…

Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model

For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1992-03, Vol.39 (3), p.280-288
Main Authors: Kiryu, T., Saitoh, Y., Ishioka, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563
cites cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563
container_end_page 288
container_issue 3
container_start_page 280
container_title IEEE transactions on biomedical engineering
container_volume 39
creator Kiryu, T.
Saitoh, Y.
Ishioka, K.
description For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.< >
doi_str_mv 10.1109/10.125013
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_125013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>125013</ieee_id><sourcerecordid>72862755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoc04PXgWhBxE8VJM0aZOjjDkHEy96Lmny7Yj0x0xaof-92TrcUQg88n0fXvJ9CF0T_EgIlk87pRyT5ARNCecipjwhp2iKMRGxpJKdowvvv8KVCZZO0CRAXHAxRXrV_IDv7EZ1tm2icLbKqRo6Z3WkGlUN3vqoLSMzNKoOs8XbMvJ2ExwfFUOkorr3uoLYd67XXe_ABLvuqzGvbg1Ul-isDDhcHXSGPl8WH_PXeP2-XM2f17FmlHexYakuWKkY4YwBAVlAVhYiSxNRcKrLRJY0FRK00VoKk7CMZDoQRgJRiqfJDN2PuVvXfvdhq7y2XkNVqQba3ucZFSnNOP8XpIJlUmQ4gA8jqF3rvYMy3zpbKzfkBOe75ve6bz6wt4fQvqjBHMmx6uDfHXzltapKpxpt_R_GSYJTuvvbzYhZADiGjG_8AlUvlAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28479870</pqid></control><display><type>article</type><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</creator><creatorcontrib>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</creatorcontrib><description>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.&lt; &gt;</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.125013</identifier><identifier>PMID: 1555858</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analog-Digital Conversion ; Analytical models ; Biological and medical sciences ; Electrodiagnosis. Electric activity recording ; Electromyography ; Fatigue ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Least-Squares Analysis ; Life estimation ; Masseter Muscle - physiology ; Medical sciences ; Models, Biological ; Muscle Contraction - physiology ; Muscles ; Nervous system ; Parameter estimation ; Recruitment ; Reference Values ; Reflection ; Signal analysis ; Signal Processing, Computer-Assisted</subject><ispartof>IEEE transactions on biomedical engineering, 1992-03, Vol.39 (3), p.280-288</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</citedby><cites>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/125013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5130625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1555858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiryu, T.</creatorcontrib><creatorcontrib>Saitoh, Y.</creatorcontrib><creatorcontrib>Ishioka, K.</creatorcontrib><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.&lt; &gt;</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analog-Digital Conversion</subject><subject>Analytical models</subject><subject>Biological and medical sciences</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electromyography</subject><subject>Fatigue</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Least-Squares Analysis</subject><subject>Life estimation</subject><subject>Masseter Muscle - physiology</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Muscle Contraction - physiology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Parameter estimation</subject><subject>Recruitment</subject><subject>Reference Values</subject><subject>Reflection</subject><subject>Signal analysis</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAcxYMoc04PXgWhBxE8VJM0aZOjjDkHEy96Lmny7Yj0x0xaof-92TrcUQg88n0fXvJ9CF0T_EgIlk87pRyT5ARNCecipjwhp2iKMRGxpJKdowvvv8KVCZZO0CRAXHAxRXrV_IDv7EZ1tm2icLbKqRo6Z3WkGlUN3vqoLSMzNKoOs8XbMvJ2ExwfFUOkorr3uoLYd67XXe_ABLvuqzGvbg1Ul-isDDhcHXSGPl8WH_PXeP2-XM2f17FmlHexYakuWKkY4YwBAVlAVhYiSxNRcKrLRJY0FRK00VoKk7CMZDoQRgJRiqfJDN2PuVvXfvdhq7y2XkNVqQba3ucZFSnNOP8XpIJlUmQ4gA8jqF3rvYMy3zpbKzfkBOe75ve6bz6wt4fQvqjBHMmx6uDfHXzltapKpxpt_R_GSYJTuvvbzYhZADiGjG_8AlUvlAc</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Kiryu, T.</creator><creator>Saitoh, Y.</creator><creator>Ishioka, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19920301</creationdate><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><author>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analog-Digital Conversion</topic><topic>Analytical models</topic><topic>Biological and medical sciences</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electromyography</topic><topic>Fatigue</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Least-Squares Analysis</topic><topic>Life estimation</topic><topic>Masseter Muscle - physiology</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Muscle Contraction - physiology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Parameter estimation</topic><topic>Recruitment</topic><topic>Reference Values</topic><topic>Reflection</topic><topic>Signal analysis</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiryu, T.</creatorcontrib><creatorcontrib>Saitoh, Y.</creatorcontrib><creatorcontrib>Ishioka, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiryu, T.</au><au>Saitoh, Y.</au><au>Ishioka, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>1992-03-01</date><risdate>1992</risdate><volume>39</volume><issue>3</issue><spage>280</spage><epage>288</epage><pages>280-288</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>1555858</pmid><doi>10.1109/10.125013</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 1992-03, Vol.39 (3), p.280-288
issn 0018-9294
1558-2531
language eng
recordid cdi_ieee_primary_125013
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Analog-Digital Conversion
Analytical models
Biological and medical sciences
Electrodiagnosis. Electric activity recording
Electromyography
Fatigue
Humans
Investigative techniques, diagnostic techniques (general aspects)
Least-Squares Analysis
Life estimation
Masseter Muscle - physiology
Medical sciences
Models, Biological
Muscle Contraction - physiology
Muscles
Nervous system
Parameter estimation
Recruitment
Reference Values
Reflection
Signal analysis
Signal Processing, Computer-Assisted
title Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20parametric%20analysis%20of%20dynamic%20EMG%20signals%20by%20a%20muscle-structured%20simulation%20model&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Kiryu,%20T.&rft.date=1992-03-01&rft.volume=39&rft.issue=3&rft.spage=280&rft.epage=288&rft.pages=280-288&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.125013&rft_dat=%3Cproquest_ieee_%3E72862755%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28479870&rft_id=info:pmid/1555858&rft_ieee_id=125013&rfr_iscdi=true