Loading…
Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model
For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased e...
Saved in:
Published in: | IEEE transactions on biomedical engineering 1992-03, Vol.39 (3), p.280-288 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563 |
container_end_page | 288 |
container_issue | 3 |
container_start_page | 280 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 39 |
creator | Kiryu, T. Saitoh, Y. Ishioka, K. |
description | For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.< > |
doi_str_mv | 10.1109/10.125013 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_125013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>125013</ieee_id><sourcerecordid>72862755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</originalsourceid><addsrcrecordid>eNqFkM9LwzAcxYMoc04PXgWhBxE8VJM0aZOjjDkHEy96Lmny7Yj0x0xaof-92TrcUQg88n0fXvJ9CF0T_EgIlk87pRyT5ARNCecipjwhp2iKMRGxpJKdowvvv8KVCZZO0CRAXHAxRXrV_IDv7EZ1tm2icLbKqRo6Z3WkGlUN3vqoLSMzNKoOs8XbMvJ2ExwfFUOkorr3uoLYd67XXe_ABLvuqzGvbg1Ul-isDDhcHXSGPl8WH_PXeP2-XM2f17FmlHexYakuWKkY4YwBAVlAVhYiSxNRcKrLRJY0FRK00VoKk7CMZDoQRgJRiqfJDN2PuVvXfvdhq7y2XkNVqQba3ucZFSnNOP8XpIJlUmQ4gA8jqF3rvYMy3zpbKzfkBOe75ve6bz6wt4fQvqjBHMmx6uDfHXzltapKpxpt_R_GSYJTuvvbzYhZADiGjG_8AlUvlAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28479870</pqid></control><display><type>article</type><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</creator><creatorcontrib>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</creatorcontrib><description>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.< ></description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.125013</identifier><identifier>PMID: 1555858</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Analog-Digital Conversion ; Analytical models ; Biological and medical sciences ; Electrodiagnosis. Electric activity recording ; Electromyography ; Fatigue ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Least-Squares Analysis ; Life estimation ; Masseter Muscle - physiology ; Medical sciences ; Models, Biological ; Muscle Contraction - physiology ; Muscles ; Nervous system ; Parameter estimation ; Recruitment ; Reference Values ; Reflection ; Signal analysis ; Signal Processing, Computer-Assisted</subject><ispartof>IEEE transactions on biomedical engineering, 1992-03, Vol.39 (3), p.280-288</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</citedby><cites>FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/125013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5130625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1555858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiryu, T.</creatorcontrib><creatorcontrib>Saitoh, Y.</creatorcontrib><creatorcontrib>Ishioka, K.</creatorcontrib><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.< ></description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Analog-Digital Conversion</subject><subject>Analytical models</subject><subject>Biological and medical sciences</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electromyography</subject><subject>Fatigue</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Least-Squares Analysis</subject><subject>Life estimation</subject><subject>Masseter Muscle - physiology</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Muscle Contraction - physiology</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Parameter estimation</subject><subject>Recruitment</subject><subject>Reference Values</subject><subject>Reflection</subject><subject>Signal analysis</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAcxYMoc04PXgWhBxE8VJM0aZOjjDkHEy96Lmny7Yj0x0xaof-92TrcUQg88n0fXvJ9CF0T_EgIlk87pRyT5ARNCecipjwhp2iKMRGxpJKdowvvv8KVCZZO0CRAXHAxRXrV_IDv7EZ1tm2icLbKqRo6Z3WkGlUN3vqoLSMzNKoOs8XbMvJ2ExwfFUOkorr3uoLYd67XXe_ABLvuqzGvbg1Ul-isDDhcHXSGPl8WH_PXeP2-XM2f17FmlHexYakuWKkY4YwBAVlAVhYiSxNRcKrLRJY0FRK00VoKk7CMZDoQRgJRiqfJDN2PuVvXfvdhq7y2XkNVqQba3ucZFSnNOP8XpIJlUmQ4gA8jqF3rvYMy3zpbKzfkBOe75ve6bz6wt4fQvqjBHMmx6uDfHXzltapKpxpt_R_GSYJTuvvbzYhZADiGjG_8AlUvlAc</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Kiryu, T.</creator><creator>Saitoh, Y.</creator><creator>Ishioka, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19920301</creationdate><title>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</title><author>Kiryu, T. ; Saitoh, Y. ; Ishioka, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Analog-Digital Conversion</topic><topic>Analytical models</topic><topic>Biological and medical sciences</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electromyography</topic><topic>Fatigue</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Least-Squares Analysis</topic><topic>Life estimation</topic><topic>Masseter Muscle - physiology</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Muscle Contraction - physiology</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Parameter estimation</topic><topic>Recruitment</topic><topic>Reference Values</topic><topic>Reflection</topic><topic>Signal analysis</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiryu, T.</creatorcontrib><creatorcontrib>Saitoh, Y.</creatorcontrib><creatorcontrib>Ishioka, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiryu, T.</au><au>Saitoh, Y.</au><au>Ishioka, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>1992-03-01</date><risdate>1992</risdate><volume>39</volume><issue>3</issue><spage>280</spage><epage>288</epage><pages>280-288</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>For the analysis of electromyographic (EMG) signals during dynamic movement, the authors propose an estimation algorithm for the time-varying parameters of an autoregressive model. The parameters correspond to less biased time-varying reflection coefficients. The authors determined the less biased estimation using a locally quasi-stationary model and named these parameters 'k parameters.' They estimated k parameters up to the fifth order for the surface EMG signals of a masseter muscle during rapid open-close movement of the lower jaw, a ballistic contraction, and fatigue. According to the results, the time courses of the k parameters displayed remarkable properties. In order to study the behavior of k parameters physiologically, the authors produced a muscle-structured simulation model based on anatomical and physiological data. The simulation results suggested that the behavior of the third parameter is related to the number of active motor units (MUs) at the shallow layer of a muscle. The detailed recruitment mechanism in terms of the MU types has not yet been solved.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>1555858</pmid><doi>10.1109/10.125013</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 1992-03, Vol.39 (3), p.280-288 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_ieee_primary_125013 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Algorithms Analog-Digital Conversion Analytical models Biological and medical sciences Electrodiagnosis. Electric activity recording Electromyography Fatigue Humans Investigative techniques, diagnostic techniques (general aspects) Least-Squares Analysis Life estimation Masseter Muscle - physiology Medical sciences Models, Biological Muscle Contraction - physiology Muscles Nervous system Parameter estimation Recruitment Reference Values Reflection Signal analysis Signal Processing, Computer-Assisted |
title | Investigation on parametric analysis of dynamic EMG signals by a muscle-structured simulation model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20parametric%20analysis%20of%20dynamic%20EMG%20signals%20by%20a%20muscle-structured%20simulation%20model&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Kiryu,%20T.&rft.date=1992-03-01&rft.volume=39&rft.issue=3&rft.spage=280&rft.epage=288&rft.pages=280-288&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.125013&rft_dat=%3Cproquest_ieee_%3E72862755%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-d46cb4fa41544e1e9be7fb87638b52cf39f2689ecdcc98d34717c7fbd9e1aa563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28479870&rft_id=info:pmid/1555858&rft_ieee_id=125013&rfr_iscdi=true |