Loading…

Reconstruct transcription networks by combining gene expression correlations with TF binding sites

One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription module...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying-Zhe Hsu, Yuh-Jyh Hu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 264
container_issue
container_start_page 257
container_title
container_volume
creator Ying-Zhe Hsu
Yuh-Jyh Hu
description One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.
doi_str_mv 10.1109/MMSE.2003.1254450
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1254450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1254450</ieee_id><sourcerecordid>1254450</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af9fe03536d6d5ae00da25188e49da24cdaead18005407a81d4dbca68c3fd52e3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0hJKD0ARAXv0DCOrbzc0RVC0itkKCcK8feFEPrVF6j0rcnEZ3LzOGbOQxjdwJyIaB5WK3e53kBIHNRaKU0XLAbqMpGFyBFecWmRF8wSGmhK3XN2je0faAUf2ziKZpANvpD8n3gAdOxj9_E2xO3_b71wYct32JAjr-HiEQjZfsYcWfGBvGjT598veAD60aYfEK6ZZed2RFOzz5hH4v5evacLV-fXmaPy8yLSqfMdE2HILUsXem0QQBnCi3qGlUzJGWdQeNEDaAVVKYWTrnWmrK2snO6QDlh9_-7HhE3h-j3Jp425xvkH1mGVnE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconstruct transcription networks by combining gene expression correlations with TF binding sites</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying-Zhe Hsu ; Yuh-Jyh Hu</creator><creatorcontrib>Ying-Zhe Hsu ; Yuh-Jyh Hu</creatorcontrib><description>One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.</description><identifier>ISBN: 0769520316</identifier><identifier>ISBN: 9780769520315</identifier><identifier>DOI: 10.1109/MMSE.2003.1254450</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological system modeling ; Biology computing ; DNA ; Gene expression ; Genetics ; Genomics ; Information science ; Large-scale systems ; Sequences</subject><ispartof>Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings, 2003, p.257-264</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1254450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1254450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Zhe Hsu</creatorcontrib><creatorcontrib>Yuh-Jyh Hu</creatorcontrib><title>Reconstruct transcription networks by combining gene expression correlations with TF binding sites</title><title>Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings</title><addtitle>MMSE</addtitle><description>One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.</description><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Information science</subject><subject>Large-scale systems</subject><subject>Sequences</subject><isbn>0769520316</isbn><isbn>9780769520315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhC0hJKD0ARAXv0DCOrbzc0RVC0itkKCcK8feFEPrVF6j0rcnEZ3LzOGbOQxjdwJyIaB5WK3e53kBIHNRaKU0XLAbqMpGFyBFecWmRF8wSGmhK3XN2je0faAUf2ziKZpANvpD8n3gAdOxj9_E2xO3_b71wYct32JAjr-HiEQjZfsYcWfGBvGjT598veAD60aYfEK6ZZed2RFOzz5hH4v5evacLV-fXmaPy8yLSqfMdE2HILUsXem0QQBnCi3qGlUzJGWdQeNEDaAVVKYWTrnWmrK2snO6QDlh9_-7HhE3h-j3Jp425xvkH1mGVnE</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ying-Zhe Hsu</creator><creator>Yuh-Jyh Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Reconstruct transcription networks by combining gene expression correlations with TF binding sites</title><author>Ying-Zhe Hsu ; Yuh-Jyh Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af9fe03536d6d5ae00da25188e49da24cdaead18005407a81d4dbca68c3fd52e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Information science</topic><topic>Large-scale systems</topic><topic>Sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Zhe Hsu</creatorcontrib><creatorcontrib>Yuh-Jyh Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Zhe Hsu</au><au>Yuh-Jyh Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconstruct transcription networks by combining gene expression correlations with TF binding sites</atitle><btitle>Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings</btitle><stitle>MMSE</stitle><date>2003</date><risdate>2003</risdate><spage>257</spage><epage>264</epage><pages>257-264</pages><isbn>0769520316</isbn><isbn>9780769520315</isbn><abstract>One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of transcription networks is essential to modelling this mechanism. We describe a novel approach for building transcription networks from transcription modules by combining expression profile correlations with probabilistic element assessment. To demonstrate its performance, we systematically tested it on 27 transcription modules and reconstructed the transcription network for 6 transcription factors and 15 genes involved in the yeast cell cycle. The experimental results show that our combinatorial approach can better filter false positives to increase the selectivity in prediction of target genes. The regulatory control relationships described by the network reconstructed also mostly agree with those in earlier studies.</abstract><pub>IEEE</pub><doi>10.1109/MMSE.2003.1254450</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769520316
ispartof Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings, 2003, p.257-264
issn
language eng
recordid cdi_ieee_primary_1254450
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Biological system modeling
Biology computing
DNA
Gene expression
Genetics
Genomics
Information science
Large-scale systems
Sequences
title Reconstruct transcription networks by combining gene expression correlations with TF binding sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconstruct%20transcription%20networks%20by%20combining%20gene%20expression%20correlations%20with%20TF%20binding%20sites&rft.btitle=Fifth%20International%20Symposium%20on%20Multimedia%20Software%20Engineering,%202003.%20Proceedings&rft.au=Ying-Zhe%20Hsu&rft.date=2003&rft.spage=257&rft.epage=264&rft.pages=257-264&rft.isbn=0769520316&rft.isbn_list=9780769520315&rft_id=info:doi/10.1109/MMSE.2003.1254450&rft_dat=%3Cieee_6IE%3E1254450%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-af9fe03536d6d5ae00da25188e49da24cdaead18005407a81d4dbca68c3fd52e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1254450&rfr_iscdi=true