Loading…
Temperature-dependent I-V characteristics of organic-inorganic heterojunction diodes
In this paper, heterojunctions were fabricated by employing p-type Si and thin films of poly-N-epoxipropylcarbazole (PEPC) doped with tetracyanoquinodimethane (TCNQ). The PEPC films were grown on Si wafers at room temperature but with different gravity (g) conditions:-1, 123, 277, and 1107g. Current...
Saved in:
Published in: | IEEE transactions on electron devices 2004-01, Vol.51 (1), p.121-126 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, heterojunctions were fabricated by employing p-type Si and thin films of poly-N-epoxipropylcarbazole (PEPC) doped with tetracyanoquinodimethane (TCNQ). The PEPC films were grown on Si wafers at room temperature but with different gravity (g) conditions:-1, 123, 277, and 1107g. Current-voltage (I-V) characteristics of the grown hybrid structures were evaluated as a function temperature (T) ranging from 20/spl deg/C to 60/spl deg/C. It was found that all samples are p-p isotype heterojunctions and the junctions fabricated at a high value of g, i.e., at 277 and 1107 g, showed reversible rectifying properties as a function of device temperature. Whereas the behavior of devices fabricated at 123 and 1 g were rectifying at room temperature, but became almost nonconductive after treating the samples at 60/spl deg/C. Rectification ratio, threshold voltage, reverse saturation current, and junction resistance of the fabricated junctions were evaluated at different temperatures. At T=60/spl deg/C, the devices grown at 1107 g exhibited rectification ratio less than unity which may be attributed to the switching of the depletion at the interface. This has been explained by assuming the generation of carriers are at elevated temperatures in the organic film, and their subsequent emission from the organic to the inorganic side of the heterojunction. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2003.820650 |