Loading…
Discovery of high-dimensional inclusion dependencies
Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database e...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 685 |
container_issue | |
container_start_page | 683 |
container_title | |
container_volume | |
creator | Koeller, A. Rundensteiner, E.A. |
description | Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets. |
doi_str_mv | 10.1109/ICDE.2003.1260834 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1260834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1260834</ieee_id><sourcerecordid>1260834</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiTGZ_wPClf6A1yU1zk0fppg4Ge9Hn0TQ3LtKlo1Fh_96KOxw433k5cBhbCV4Lwe3jtl1vask51EJqbkDdsMKi4bMBtW70ghU5f_JZqgFr1B1T65j78YemSzmG8hg_jpWPJ0o5jqkbypj64fuPS09nSp5SHynfs9vQDZmKay7Z-_PmrX2tdvuXbfu0q6JA-KoCONSIqJUXFpzxAFZJbKRTnUSnPTcYpOx61QhAF3QQ1FtjwXOci4Mle_jfjUR0OE_x1E2Xw_Ub_AKs3kPF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovery of high-dimensional inclusion dependencies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koeller, A. ; Rundensteiner, E.A.</creator><creatorcontrib>Koeller, A. ; Rundensteiner, E.A.</creatorcontrib><description>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</description><identifier>ISBN: 9780780376656</identifier><identifier>ISBN: 078037665X</identifier><identifier>DOI: 10.1109/ICDE.2003.1260834</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Association rules ; Companies ; Computer science ; Data mining ; Diseases ; Instruments ; Medical treatment ; Redundancy</subject><ispartof>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.683-685</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1260834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1260834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koeller, A.</creatorcontrib><creatorcontrib>Rundensteiner, E.A.</creatorcontrib><title>Discovery of high-dimensional inclusion dependencies</title><title>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</title><addtitle>ICDE</addtitle><description>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</description><subject>Application software</subject><subject>Association rules</subject><subject>Companies</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Diseases</subject><subject>Instruments</subject><subject>Medical treatment</subject><subject>Redundancy</subject><isbn>9780780376656</isbn><isbn>078037665X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMiTGZ_wPClf6A1yU1zk0fppg4Ge9Hn0TQ3LtKlo1Fh_96KOxw433k5cBhbCV4Lwe3jtl1vask51EJqbkDdsMKi4bMBtW70ghU5f_JZqgFr1B1T65j78YemSzmG8hg_jpWPJ0o5jqkbypj64fuPS09nSp5SHynfs9vQDZmKay7Z-_PmrX2tdvuXbfu0q6JA-KoCONSIqJUXFpzxAFZJbKRTnUSnPTcYpOx61QhAF3QQ1FtjwXOci4Mle_jfjUR0OE_x1E2Xw_Ub_AKs3kPF</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Koeller, A.</creator><creator>Rundensteiner, E.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Discovery of high-dimensional inclusion dependencies</title><author>Koeller, A. ; Rundensteiner, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Application software</topic><topic>Association rules</topic><topic>Companies</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Diseases</topic><topic>Instruments</topic><topic>Medical treatment</topic><topic>Redundancy</topic><toplevel>online_resources</toplevel><creatorcontrib>Koeller, A.</creatorcontrib><creatorcontrib>Rundensteiner, E.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koeller, A.</au><au>Rundensteiner, E.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovery of high-dimensional inclusion dependencies</atitle><btitle>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</btitle><stitle>ICDE</stitle><date>2003</date><risdate>2003</risdate><spage>683</spage><epage>685</epage><pages>683-685</pages><isbn>9780780376656</isbn><isbn>078037665X</isbn><abstract>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2003.1260834</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780376656 |
ispartof | Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.683-685 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1260834 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Association rules Companies Computer science Data mining Diseases Instruments Medical treatment Redundancy |
title | Discovery of high-dimensional inclusion dependencies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovery%20of%20high-dimensional%20inclusion%20dependencies&rft.btitle=Proceedings%2019th%20International%20Conference%20on%20Data%20Engineering%20(Cat.%20No.03CH37405)&rft.au=Koeller,%20A.&rft.date=2003&rft.spage=683&rft.epage=685&rft.pages=683-685&rft.isbn=9780780376656&rft.isbn_list=078037665X&rft_id=info:doi/10.1109/ICDE.2003.1260834&rft_dat=%3Cieee_6IE%3E1260834%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1260834&rfr_iscdi=true |