Loading…

Discovery of high-dimensional inclusion dependencies

Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database e...

Full description

Saved in:
Bibliographic Details
Main Authors: Koeller, A., Rundensteiner, E.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 685
container_issue
container_start_page 683
container_title
container_volume
creator Koeller, A.
Rundensteiner, E.A.
description Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.
doi_str_mv 10.1109/ICDE.2003.1260834
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1260834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1260834</ieee_id><sourcerecordid>1260834</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiTGZ_wPClf6A1yU1zk0fppg4Ge9Hn0TQ3LtKlo1Fh_96KOxw433k5cBhbCV4Lwe3jtl1vask51EJqbkDdsMKi4bMBtW70ghU5f_JZqgFr1B1T65j78YemSzmG8hg_jpWPJ0o5jqkbypj64fuPS09nSp5SHynfs9vQDZmKay7Z-_PmrX2tdvuXbfu0q6JA-KoCONSIqJUXFpzxAFZJbKRTnUSnPTcYpOx61QhAF3QQ1FtjwXOci4Mle_jfjUR0OE_x1E2Xw_Ub_AKs3kPF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Discovery of high-dimensional inclusion dependencies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Koeller, A. ; Rundensteiner, E.A.</creator><creatorcontrib>Koeller, A. ; Rundensteiner, E.A.</creatorcontrib><description>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</description><identifier>ISBN: 9780780376656</identifier><identifier>ISBN: 078037665X</identifier><identifier>DOI: 10.1109/ICDE.2003.1260834</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Association rules ; Companies ; Computer science ; Data mining ; Diseases ; Instruments ; Medical treatment ; Redundancy</subject><ispartof>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.683-685</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1260834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1260834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Koeller, A.</creatorcontrib><creatorcontrib>Rundensteiner, E.A.</creatorcontrib><title>Discovery of high-dimensional inclusion dependencies</title><title>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</title><addtitle>ICDE</addtitle><description>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</description><subject>Application software</subject><subject>Association rules</subject><subject>Companies</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Diseases</subject><subject>Instruments</subject><subject>Medical treatment</subject><subject>Redundancy</subject><isbn>9780780376656</isbn><isbn>078037665X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMiTGZ_wPClf6A1yU1zk0fppg4Ge9Hn0TQ3LtKlo1Fh_96KOxw433k5cBhbCV4Lwe3jtl1vask51EJqbkDdsMKi4bMBtW70ghU5f_JZqgFr1B1T65j78YemSzmG8hg_jpWPJ0o5jqkbypj64fuPS09nSp5SHynfs9vQDZmKay7Z-_PmrX2tdvuXbfu0q6JA-KoCONSIqJUXFpzxAFZJbKRTnUSnPTcYpOx61QhAF3QQ1FtjwXOci4Mle_jfjUR0OE_x1E2Xw_Ub_AKs3kPF</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Koeller, A.</creator><creator>Rundensteiner, E.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2003</creationdate><title>Discovery of high-dimensional inclusion dependencies</title><author>Koeller, A. ; Rundensteiner, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Application software</topic><topic>Association rules</topic><topic>Companies</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Diseases</topic><topic>Instruments</topic><topic>Medical treatment</topic><topic>Redundancy</topic><toplevel>online_resources</toplevel><creatorcontrib>Koeller, A.</creatorcontrib><creatorcontrib>Rundensteiner, E.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koeller, A.</au><au>Rundensteiner, E.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discovery of high-dimensional inclusion dependencies</atitle><btitle>Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405)</btitle><stitle>ICDE</stitle><date>2003</date><risdate>2003</risdate><spage>683</spage><epage>685</epage><pages>683-685</pages><isbn>9780780376656</isbn><isbn>078037665X</isbn><abstract>Determining relationships such as functional or inclusion dependencies within and across databases is important for many applications in information integration. When such information is not available as explicit meta data, it is possible to discover potential dependencies from the source database extents. However, the complexity of such discovery problems is typically exponential in the number of attributes. We have developed an algorithm for the discovery of inclusion dependencies across high-dimensional relations in the order of 100 attributes. This algorithm is the first to efficiently solve the inclusion-dependency discovery problem. This is achieved by mapping it into a progressive series of clique-finding problems in k-uniform hypergraphs and solving those. Extensive experimental studies confirm the algorithm's efficiency on a variety of real-world data sets.</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2003.1260834</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780376656
ispartof Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405), 2003, p.683-685
issn
language eng
recordid cdi_ieee_primary_1260834
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Association rules
Companies
Computer science
Data mining
Diseases
Instruments
Medical treatment
Redundancy
title Discovery of high-dimensional inclusion dependencies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discovery%20of%20high-dimensional%20inclusion%20dependencies&rft.btitle=Proceedings%2019th%20International%20Conference%20on%20Data%20Engineering%20(Cat.%20No.03CH37405)&rft.au=Koeller,%20A.&rft.date=2003&rft.spage=683&rft.epage=685&rft.pages=683-685&rft.isbn=9780780376656&rft.isbn_list=078037665X&rft_id=info:doi/10.1109/ICDE.2003.1260834&rft_dat=%3Cieee_6IE%3E1260834%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-f3b7677764d193b8d33942752b4a27b6d087f22ac45137bf6f1ec9893d07f6fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1260834&rfr_iscdi=true