Loading…

A Lagrangian relaxation approach to job shop scheduling problems

An exploration is made of the use of Lagrangian relaxation to schedule job shops, which include multiple machine types, generic precedence constraint, and simple routing considerations. From an augmented Lagrangian formulation, a decomposed solution methodology is developed using a Jacobi-type itera...

Full description

Saved in:
Bibliographic Details
Main Authors: Hoitomt, D.J., Luh, P.B., Pattipati, K.R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1949 vol.3
container_issue
container_start_page 1944
container_title
container_volume
creator Hoitomt, D.J.
Luh, P.B.
Pattipati, K.R.
description An exploration is made of the use of Lagrangian relaxation to schedule job shops, which include multiple machine types, generic precedence constraint, and simple routing considerations. From an augmented Lagrangian formulation, a decomposed solution methodology is developed using a Jacobi-type iterative approach. The subgradient method and the multiplier method are used to update the multipliers and the penalty coefficients. The dual solution forms the basis of a list scheduling algorithm which generates a feasible schedule. Unfortunately, the dual cost is not a lower bound on the optimal cost because of the Jacobi iterative technique employed. In order to evaluate the schedule, a second problem formulation is adopted. Its solution would ordinarily require prohibitive memory and considerable computation time. By utilizing part of the multipliers obtained from the first problem formulation, however, an effective lower bound on the optimal cost can be quickly obtained. A numerical example is given in which schedule cost is within 2% of its lower bound.< >
doi_str_mv 10.1109/ROBOT.1990.126292
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_126292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>126292</ieee_id><sourcerecordid>126292</sourcerecordid><originalsourceid>FETCH-LOGICAL-g632-307cefc3252ae112e3510c59fba5f9dbb78bcb85dc88539a6977b3099987e4b13</originalsourceid><addsrcrecordid>eNotj8lqwzAURQWlkJL6A9KVfsCpnlQNb9c0dAKDoXgfnmR5CI5trBTav28gXV0OBw5cxjYgtgACH7_Kl7LaAuKFpZEob1iG1gkHzqAwYFcsS-kohAA0CMLcsecdL6hdaGx7GvkSB_qhcz-NnOZ5mSh0_Dzx4-R56qaZp9DF-nvox5ZfrB_iKd2z24aGFLP_XbPq7bXaf-RF-f653xV5a5TMlbAhNkFJLSkCyKg0iKCx8aQbrL23zgfvdB2c0wrJoLVeCUR0Nj55UGv2cM32McbDvPQnWn4P15fqDyfmR-8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Lagrangian relaxation approach to job shop scheduling problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hoitomt, D.J. ; Luh, P.B. ; Pattipati, K.R.</creator><creatorcontrib>Hoitomt, D.J. ; Luh, P.B. ; Pattipati, K.R.</creatorcontrib><description>An exploration is made of the use of Lagrangian relaxation to schedule job shops, which include multiple machine types, generic precedence constraint, and simple routing considerations. From an augmented Lagrangian formulation, a decomposed solution methodology is developed using a Jacobi-type iterative approach. The subgradient method and the multiplier method are used to update the multipliers and the penalty coefficients. The dual solution forms the basis of a list scheduling algorithm which generates a feasible schedule. Unfortunately, the dual cost is not a lower bound on the optimal cost because of the Jacobi iterative technique employed. In order to evaluate the schedule, a second problem formulation is adopted. Its solution would ordinarily require prohibitive memory and considerable computation time. By utilizing part of the multipliers obtained from the first problem formulation, however, an effective lower bound on the optimal cost can be quickly obtained. A numerical example is given in which schedule cost is within 2% of its lower bound.&lt; &gt;</description><identifier>ISBN: 9780818690617</identifier><identifier>ISBN: 0818690615</identifier><identifier>DOI: 10.1109/ROBOT.1990.126292</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Cost function ; Iterative methods ; Jacobian matrices ; Job shop scheduling ; Lagrangian functions ; Optimal scheduling ; Processor scheduling ; Pulp manufacturing ; Routing ; Scheduling algorithm</subject><ispartof>Proceedings., IEEE International Conference on Robotics and Automation, 1990, p.1944-1949 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/126292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/126292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoitomt, D.J.</creatorcontrib><creatorcontrib>Luh, P.B.</creatorcontrib><creatorcontrib>Pattipati, K.R.</creatorcontrib><title>A Lagrangian relaxation approach to job shop scheduling problems</title><title>Proceedings., IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>An exploration is made of the use of Lagrangian relaxation to schedule job shops, which include multiple machine types, generic precedence constraint, and simple routing considerations. From an augmented Lagrangian formulation, a decomposed solution methodology is developed using a Jacobi-type iterative approach. The subgradient method and the multiplier method are used to update the multipliers and the penalty coefficients. The dual solution forms the basis of a list scheduling algorithm which generates a feasible schedule. Unfortunately, the dual cost is not a lower bound on the optimal cost because of the Jacobi iterative technique employed. In order to evaluate the schedule, a second problem formulation is adopted. Its solution would ordinarily require prohibitive memory and considerable computation time. By utilizing part of the multipliers obtained from the first problem formulation, however, an effective lower bound on the optimal cost can be quickly obtained. A numerical example is given in which schedule cost is within 2% of its lower bound.&lt; &gt;</description><subject>Cost function</subject><subject>Iterative methods</subject><subject>Jacobian matrices</subject><subject>Job shop scheduling</subject><subject>Lagrangian functions</subject><subject>Optimal scheduling</subject><subject>Processor scheduling</subject><subject>Pulp manufacturing</subject><subject>Routing</subject><subject>Scheduling algorithm</subject><isbn>9780818690617</isbn><isbn>0818690615</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1990</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8lqwzAURQWlkJL6A9KVfsCpnlQNb9c0dAKDoXgfnmR5CI5trBTav28gXV0OBw5cxjYgtgACH7_Kl7LaAuKFpZEob1iG1gkHzqAwYFcsS-kohAA0CMLcsecdL6hdaGx7GvkSB_qhcz-NnOZ5mSh0_Dzx4-R56qaZp9DF-nvox5ZfrB_iKd2z24aGFLP_XbPq7bXaf-RF-f653xV5a5TMlbAhNkFJLSkCyKg0iKCx8aQbrL23zgfvdB2c0wrJoLVeCUR0Nj55UGv2cM32McbDvPQnWn4P15fqDyfmR-8</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Hoitomt, D.J.</creator><creator>Luh, P.B.</creator><creator>Pattipati, K.R.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1990</creationdate><title>A Lagrangian relaxation approach to job shop scheduling problems</title><author>Hoitomt, D.J. ; Luh, P.B. ; Pattipati, K.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g632-307cefc3252ae112e3510c59fba5f9dbb78bcb85dc88539a6977b3099987e4b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Cost function</topic><topic>Iterative methods</topic><topic>Jacobian matrices</topic><topic>Job shop scheduling</topic><topic>Lagrangian functions</topic><topic>Optimal scheduling</topic><topic>Processor scheduling</topic><topic>Pulp manufacturing</topic><topic>Routing</topic><topic>Scheduling algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoitomt, D.J.</creatorcontrib><creatorcontrib>Luh, P.B.</creatorcontrib><creatorcontrib>Pattipati, K.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoitomt, D.J.</au><au>Luh, P.B.</au><au>Pattipati, K.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Lagrangian relaxation approach to job shop scheduling problems</atitle><btitle>Proceedings., IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1990</date><risdate>1990</risdate><spage>1944</spage><epage>1949 vol.3</epage><pages>1944-1949 vol.3</pages><isbn>9780818690617</isbn><isbn>0818690615</isbn><abstract>An exploration is made of the use of Lagrangian relaxation to schedule job shops, which include multiple machine types, generic precedence constraint, and simple routing considerations. From an augmented Lagrangian formulation, a decomposed solution methodology is developed using a Jacobi-type iterative approach. The subgradient method and the multiplier method are used to update the multipliers and the penalty coefficients. The dual solution forms the basis of a list scheduling algorithm which generates a feasible schedule. Unfortunately, the dual cost is not a lower bound on the optimal cost because of the Jacobi iterative technique employed. In order to evaluate the schedule, a second problem formulation is adopted. Its solution would ordinarily require prohibitive memory and considerable computation time. By utilizing part of the multipliers obtained from the first problem formulation, however, an effective lower bound on the optimal cost can be quickly obtained. A numerical example is given in which schedule cost is within 2% of its lower bound.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ROBOT.1990.126292</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818690617
ispartof Proceedings., IEEE International Conference on Robotics and Automation, 1990, p.1944-1949 vol.3
issn
language eng
recordid cdi_ieee_primary_126292
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Iterative methods
Jacobian matrices
Job shop scheduling
Lagrangian functions
Optimal scheduling
Processor scheduling
Pulp manufacturing
Routing
Scheduling algorithm
title A Lagrangian relaxation approach to job shop scheduling problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Lagrangian%20relaxation%20approach%20to%20job%20shop%20scheduling%20problems&rft.btitle=Proceedings.,%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Hoitomt,%20D.J.&rft.date=1990&rft.spage=1944&rft.epage=1949%20vol.3&rft.pages=1944-1949%20vol.3&rft.isbn=9780818690617&rft.isbn_list=0818690615&rft_id=info:doi/10.1109/ROBOT.1990.126292&rft_dat=%3Cieee_6IE%3E126292%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g632-307cefc3252ae112e3510c59fba5f9dbb78bcb85dc88539a6977b3099987e4b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=126292&rfr_iscdi=true