Loading…

Design and analysis of a content-based pathology image retrieval system

A prototype, content-based image retrieval system has been built employing a client/server architecture to access supercomputing power from the physician's desktop. The system retrieves images and their associated annotations from a networked microscopic pathology image database based on conten...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2003-12, Vol.7 (4), p.249-255
Main Authors: Lei Zheng, Wetzel, A.W., Gilbertson, J., Becich, M.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A prototype, content-based image retrieval system has been built employing a client/server architecture to access supercomputing power from the physician's desktop. The system retrieves images and their associated annotations from a networked microscopic pathology image database based on content similarity to user supplied query images. Similarity is evaluated based on four image feature types: color histogram, image texture, Fourier coefficients, and wavelet coefficients, using the vector dot product as a distance metric. Current retrieval accuracy varies across pathological categories depending on the number of available training samples and the effectiveness of the feature set. The distance measure of the search algorithm was validated by agglomerative cluster analysis in light of the medical domain knowledge. Results show a correlation between pathological significance and the image document distance value generated by the computer algorithm. This correlation agrees with observed visual similarity. This validation method has an advantage over traditional statistical evaluation methods when sample size is small and where domain knowledge is important. A multi-dimensional scaling analysis shows a low dimensionality nature of the embedded space for the current test set.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2003.822952