Loading…

A tonal features exploration algorithm with independent component analysis

In this paper, the tonal feature exploration (TFE) algorithm is addressed to intent to explore representative audio features, which can offer rather discriminative power to meet the classification of human perception. First of all, TFE algorithm searches the defined tonal tracks from the successive...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsin-Lung Hsieh, Din-Yuen Chan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 248
container_issue
container_start_page 241
container_title
container_volume
creator Hsin-Lung Hsieh
Din-Yuen Chan
description In this paper, the tonal feature exploration (TFE) algorithm is addressed to intent to explore representative audio features, which can offer rather discriminative power to meet the classification of human perception. First of all, TFE algorithm searches the defined tonal tracks from the successive overlapped frames by tracing and linking the near audio tones. The tonal track plays the masking role of specific segments where the representative frames are fetched along the tonal tracks based on their significance. The unmasked tonal energies for different subbands resulting from the audio psychoacoustic module are aggregated and arranged into the observation data matrix. Finally, the signature projection matrix can be learned through performing the independent component analysis (ICA) process on the observation matrices that the components of matrix are quantized as the index of an audio sequence. The precision and recall rates of the simulation can demonstrate that the TFE algorithm can extract the concise audio features for the retrieval of audio content-based database.
doi_str_mv 10.1109/MULMM.2004.1264992
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1264992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1264992</ieee_id><sourcerecordid>1264992</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-774291726191fd647b4928c19122b091b1664f1fe5dda44ccfc280b2bfb903eb3</originalsourceid><addsrcrecordid>eNotT0tOwzAUtISQCqUXgI0vkOD34tjxsqr4KhGbdl3ZiQ1GSRzFRtDbE0RnMZ_FjDSE3ALLAZi6bw510-TIGM8BBVcKL8g1k0KVyCouV2QT4ydbUKiyVHBFXrc0hVH31FmdvmYbqf2Z-jDr5MNIdf8eZp8-Bvq9MPVjZye70JhoG4YpjH9OL_VT9PGGXDrdR7s565ocHh_2u-esfnt62W3rzIMsUiYlRwUSBShwneDScIVVuyREwxQYEII7cLbsOs1527oWK2bQOKNYYU2xJnf_u95ae5xmP-j5dDzfLX4BD-ZMWQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A tonal features exploration algorithm with independent component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hsin-Lung Hsieh ; Din-Yuen Chan</creator><creatorcontrib>Hsin-Lung Hsieh ; Din-Yuen Chan</creatorcontrib><description>In this paper, the tonal feature exploration (TFE) algorithm is addressed to intent to explore representative audio features, which can offer rather discriminative power to meet the classification of human perception. First of all, TFE algorithm searches the defined tonal tracks from the successive overlapped frames by tracing and linking the near audio tones. The tonal track plays the masking role of specific segments where the representative frames are fetched along the tonal tracks based on their significance. The unmasked tonal energies for different subbands resulting from the audio psychoacoustic module are aggregated and arranged into the observation data matrix. Finally, the signature projection matrix can be learned through performing the independent component analysis (ICA) process on the observation matrices that the components of matrix are quantized as the index of an audio sequence. The precision and recall rates of the simulation can demonstrate that the TFE algorithm can extract the concise audio features for the retrieval of audio content-based database.</description><identifier>ISBN: 0769520847</identifier><identifier>ISBN: 9780769520841</identifier><identifier>DOI: 10.1109/MULMM.2004.1264992</identifier><language>eng</language><publisher>IEEE</publisher><subject>Audio databases ; Content based retrieval ; Feature extraction ; Humans ; Independent component analysis ; Instruments ; Multimedia databases ; Music information retrieval ; Psychoacoustic models ; Spatial databases</subject><ispartof>10th International Multimedia Modelling Conference, 2004. Proceedings, 2004, p.241-248</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1264992$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1264992$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsin-Lung Hsieh</creatorcontrib><creatorcontrib>Din-Yuen Chan</creatorcontrib><title>A tonal features exploration algorithm with independent component analysis</title><title>10th International Multimedia Modelling Conference, 2004. Proceedings</title><addtitle>MULMM</addtitle><description>In this paper, the tonal feature exploration (TFE) algorithm is addressed to intent to explore representative audio features, which can offer rather discriminative power to meet the classification of human perception. First of all, TFE algorithm searches the defined tonal tracks from the successive overlapped frames by tracing and linking the near audio tones. The tonal track plays the masking role of specific segments where the representative frames are fetched along the tonal tracks based on their significance. The unmasked tonal energies for different subbands resulting from the audio psychoacoustic module are aggregated and arranged into the observation data matrix. Finally, the signature projection matrix can be learned through performing the independent component analysis (ICA) process on the observation matrices that the components of matrix are quantized as the index of an audio sequence. The precision and recall rates of the simulation can demonstrate that the TFE algorithm can extract the concise audio features for the retrieval of audio content-based database.</description><subject>Audio databases</subject><subject>Content based retrieval</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Instruments</subject><subject>Multimedia databases</subject><subject>Music information retrieval</subject><subject>Psychoacoustic models</subject><subject>Spatial databases</subject><isbn>0769520847</isbn><isbn>9780769520841</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT0tOwzAUtISQCqUXgI0vkOD34tjxsqr4KhGbdl3ZiQ1GSRzFRtDbE0RnMZ_FjDSE3ALLAZi6bw510-TIGM8BBVcKL8g1k0KVyCouV2QT4ydbUKiyVHBFXrc0hVH31FmdvmYbqf2Z-jDr5MNIdf8eZp8-Bvq9MPVjZye70JhoG4YpjH9OL_VT9PGGXDrdR7s565ocHh_2u-esfnt62W3rzIMsUiYlRwUSBShwneDScIVVuyREwxQYEII7cLbsOs1527oWK2bQOKNYYU2xJnf_u95ae5xmP-j5dDzfLX4BD-ZMWQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Hsin-Lung Hsieh</creator><creator>Din-Yuen Chan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A tonal features exploration algorithm with independent component analysis</title><author>Hsin-Lung Hsieh ; Din-Yuen Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-774291726191fd647b4928c19122b091b1664f1fe5dda44ccfc280b2bfb903eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Audio databases</topic><topic>Content based retrieval</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Instruments</topic><topic>Multimedia databases</topic><topic>Music information retrieval</topic><topic>Psychoacoustic models</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsin-Lung Hsieh</creatorcontrib><creatorcontrib>Din-Yuen Chan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsin-Lung Hsieh</au><au>Din-Yuen Chan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A tonal features exploration algorithm with independent component analysis</atitle><btitle>10th International Multimedia Modelling Conference, 2004. Proceedings</btitle><stitle>MULMM</stitle><date>2004</date><risdate>2004</risdate><spage>241</spage><epage>248</epage><pages>241-248</pages><isbn>0769520847</isbn><isbn>9780769520841</isbn><abstract>In this paper, the tonal feature exploration (TFE) algorithm is addressed to intent to explore representative audio features, which can offer rather discriminative power to meet the classification of human perception. First of all, TFE algorithm searches the defined tonal tracks from the successive overlapped frames by tracing and linking the near audio tones. The tonal track plays the masking role of specific segments where the representative frames are fetched along the tonal tracks based on their significance. The unmasked tonal energies for different subbands resulting from the audio psychoacoustic module are aggregated and arranged into the observation data matrix. Finally, the signature projection matrix can be learned through performing the independent component analysis (ICA) process on the observation matrices that the components of matrix are quantized as the index of an audio sequence. The precision and recall rates of the simulation can demonstrate that the TFE algorithm can extract the concise audio features for the retrieval of audio content-based database.</abstract><pub>IEEE</pub><doi>10.1109/MULMM.2004.1264992</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769520847
ispartof 10th International Multimedia Modelling Conference, 2004. Proceedings, 2004, p.241-248
issn
language eng
recordid cdi_ieee_primary_1264992
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Audio databases
Content based retrieval
Feature extraction
Humans
Independent component analysis
Instruments
Multimedia databases
Music information retrieval
Psychoacoustic models
Spatial databases
title A tonal features exploration algorithm with independent component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20tonal%20features%20exploration%20algorithm%20with%20independent%20component%20analysis&rft.btitle=10th%20International%20Multimedia%20Modelling%20Conference,%202004.%20Proceedings&rft.au=Hsin-Lung%20Hsieh&rft.date=2004&rft.spage=241&rft.epage=248&rft.pages=241-248&rft.isbn=0769520847&rft.isbn_list=9780769520841&rft_id=info:doi/10.1109/MULMM.2004.1264992&rft_dat=%3Cieee_6IE%3E1264992%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-774291726191fd647b4928c19122b091b1664f1fe5dda44ccfc280b2bfb903eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1264992&rfr_iscdi=true