Loading…
A neural network approach to power transformer fault diagnosis
Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for tra...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 354 vol.1 |
container_issue | |
container_start_page | 351 |
container_title | |
container_volume | 1 |
creator | Fu Yang Jin Xi Lan Zhida |
description | Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1273885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1273885</ieee_id><sourcerecordid>1273885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3</originalsourceid><addsrcrecordid>eNotjM1qAyEURoVSSJvmCbrxBQYc9eq4KYTQPwhkk0B34cbR1GQyDmoIffsK7bc5Z3H47sijBqa44i37mpFFzidWJ4wU0D2QlyUd3TXhUFFuMZ0pTlOKaL9piXSKN5doSThmH9OlusfrUGgf8DjGHPITufc4ZLf455zs3l63q49mvXn_XC3XTWg1lAa4MQ7Qo-qNUko6NAztwYKxKGTrpOygrwLcGqWtYsKiFjVX4A8AKObk-e83OOf2UwoXTD_7lmvRdSB-AYUCQh4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A neural network approach to power transformer fault diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fu Yang ; Jin Xi ; Lan Zhida</creator><creatorcontrib>Fu Yang ; Jin Xi ; Lan Zhida</creatorcontrib><description>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</description><identifier>ISBN: 750626210X</identifier><identifier>ISBN: 9787506262101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Dissolved gas analysis ; Fault diagnosis ; Fuzzy set theory ; Genetic algorithms ; Neural networks ; Power system modeling ; Power system reliability ; Power transformers ; Testing</subject><ispartof>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003, 2003, Vol.1, p.351-354 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1273885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1273885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu Yang</creatorcontrib><creatorcontrib>Jin Xi</creatorcontrib><creatorcontrib>Lan Zhida</creatorcontrib><title>A neural network approach to power transformer fault diagnosis</title><title>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003</title><addtitle>ICEMS</addtitle><description>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</description><subject>Algorithm design and analysis</subject><subject>Dissolved gas analysis</subject><subject>Fault diagnosis</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Power transformers</subject><subject>Testing</subject><isbn>750626210X</isbn><isbn>9787506262101</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1qAyEURoVSSJvmCbrxBQYc9eq4KYTQPwhkk0B34cbR1GQyDmoIffsK7bc5Z3H47sijBqa44i37mpFFzidWJ4wU0D2QlyUd3TXhUFFuMZ0pTlOKaL9piXSKN5doSThmH9OlusfrUGgf8DjGHPITufc4ZLf455zs3l63q49mvXn_XC3XTWg1lAa4MQ7Qo-qNUko6NAztwYKxKGTrpOygrwLcGqWtYsKiFjVX4A8AKObk-e83OOf2UwoXTD_7lmvRdSB-AYUCQh4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Fu Yang</creator><creator>Jin Xi</creator><creator>Lan Zhida</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>A neural network approach to power transformer fault diagnosis</title><author>Fu Yang ; Jin Xi ; Lan Zhida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithm design and analysis</topic><topic>Dissolved gas analysis</topic><topic>Fault diagnosis</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Power transformers</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu Yang</creatorcontrib><creatorcontrib>Jin Xi</creatorcontrib><creatorcontrib>Lan Zhida</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu Yang</au><au>Jin Xi</au><au>Lan Zhida</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural network approach to power transformer fault diagnosis</atitle><btitle>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003</btitle><stitle>ICEMS</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>351</spage><epage>354 vol.1</epage><pages>351-354 vol.1</pages><isbn>750626210X</isbn><isbn>9787506262101</isbn><abstract>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 750626210X |
ispartof | Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003, 2003, Vol.1, p.351-354 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1273885 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Dissolved gas analysis Fault diagnosis Fuzzy set theory Genetic algorithms Neural networks Power system modeling Power system reliability Power transformers Testing |
title | A neural network approach to power transformer fault diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20network%20approach%20to%20power%20transformer%20fault%20diagnosis&rft.btitle=Sixth%20International%20Conference%20on%20Electrical%20Machines%20and%20Systems,%202003.%20ICEMS%202003&rft.au=Fu%20Yang&rft.date=2003&rft.volume=1&rft.spage=351&rft.epage=354%20vol.1&rft.pages=351-354%20vol.1&rft.isbn=750626210X&rft.isbn_list=9787506262101&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E1273885%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1273885&rfr_iscdi=true |