Loading…

A neural network approach to power transformer fault diagnosis

Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for tra...

Full description

Saved in:
Bibliographic Details
Main Authors: Fu Yang, Jin Xi, Lan Zhida
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 354 vol.1
container_issue
container_start_page 351
container_title
container_volume 1
creator Fu Yang
Jin Xi
Lan Zhida
description Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1273885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1273885</ieee_id><sourcerecordid>1273885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3</originalsourceid><addsrcrecordid>eNotjM1qAyEURoVSSJvmCbrxBQYc9eq4KYTQPwhkk0B34cbR1GQyDmoIffsK7bc5Z3H47sijBqa44i37mpFFzidWJ4wU0D2QlyUd3TXhUFFuMZ0pTlOKaL9piXSKN5doSThmH9OlusfrUGgf8DjGHPITufc4ZLf455zs3l63q49mvXn_XC3XTWg1lAa4MQ7Qo-qNUko6NAztwYKxKGTrpOygrwLcGqWtYsKiFjVX4A8AKObk-e83OOf2UwoXTD_7lmvRdSB-AYUCQh4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A neural network approach to power transformer fault diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fu Yang ; Jin Xi ; Lan Zhida</creator><creatorcontrib>Fu Yang ; Jin Xi ; Lan Zhida</creatorcontrib><description>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</description><identifier>ISBN: 750626210X</identifier><identifier>ISBN: 9787506262101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Dissolved gas analysis ; Fault diagnosis ; Fuzzy set theory ; Genetic algorithms ; Neural networks ; Power system modeling ; Power system reliability ; Power transformers ; Testing</subject><ispartof>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003, 2003, Vol.1, p.351-354 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1273885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1273885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu Yang</creatorcontrib><creatorcontrib>Jin Xi</creatorcontrib><creatorcontrib>Lan Zhida</creatorcontrib><title>A neural network approach to power transformer fault diagnosis</title><title>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003</title><addtitle>ICEMS</addtitle><description>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</description><subject>Algorithm design and analysis</subject><subject>Dissolved gas analysis</subject><subject>Fault diagnosis</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Power transformers</subject><subject>Testing</subject><isbn>750626210X</isbn><isbn>9787506262101</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1qAyEURoVSSJvmCbrxBQYc9eq4KYTQPwhkk0B34cbR1GQyDmoIffsK7bc5Z3H47sijBqa44i37mpFFzidWJ4wU0D2QlyUd3TXhUFFuMZ0pTlOKaL9piXSKN5doSThmH9OlusfrUGgf8DjGHPITufc4ZLf455zs3l63q49mvXn_XC3XTWg1lAa4MQ7Qo-qNUko6NAztwYKxKGTrpOygrwLcGqWtYsKiFjVX4A8AKObk-e83OOf2UwoXTD_7lmvRdSB-AYUCQh4</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Fu Yang</creator><creator>Jin Xi</creator><creator>Lan Zhida</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>A neural network approach to power transformer fault diagnosis</title><author>Fu Yang ; Jin Xi ; Lan Zhida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithm design and analysis</topic><topic>Dissolved gas analysis</topic><topic>Fault diagnosis</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Power transformers</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu Yang</creatorcontrib><creatorcontrib>Jin Xi</creatorcontrib><creatorcontrib>Lan Zhida</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu Yang</au><au>Jin Xi</au><au>Lan Zhida</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A neural network approach to power transformer fault diagnosis</atitle><btitle>Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003</btitle><stitle>ICEMS</stitle><date>2003</date><risdate>2003</risdate><volume>1</volume><spage>351</spage><epage>354 vol.1</epage><pages>351-354 vol.1</pages><isbn>750626210X</isbn><isbn>9787506262101</isbn><abstract>Diagnosis of power transformer abnormality is important for power system reliability. This paper introduces the dissolved gas-in-oil analysis (DGA) according to the characteristic of transformer fault diagnosis, based on fuzzy set theory and adaptive genetic algorithm, a neural network model for transformer fault diagnosis is built by using modular back-propagation (BP). The results of training and testing show that the method is effective and available.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 750626210X
ispartof Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003, 2003, Vol.1, p.351-354 vol.1
issn
language eng
recordid cdi_ieee_primary_1273885
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Dissolved gas analysis
Fault diagnosis
Fuzzy set theory
Genetic algorithms
Neural networks
Power system modeling
Power system reliability
Power transformers
Testing
title A neural network approach to power transformer fault diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20neural%20network%20approach%20to%20power%20transformer%20fault%20diagnosis&rft.btitle=Sixth%20International%20Conference%20on%20Electrical%20Machines%20and%20Systems,%202003.%20ICEMS%202003&rft.au=Fu%20Yang&rft.date=2003&rft.volume=1&rft.spage=351&rft.epage=354%20vol.1&rft.pages=351-354%20vol.1&rft.isbn=750626210X&rft.isbn_list=9787506262101&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E1273885%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5299e5afa6d96664ea90acbc59ca341e4485d34152c967c603ca73fa665fb55a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1273885&rfr_iscdi=true