Loading…

Vehicle detection approaches using the NVESD Sensor Fusion Testbed

The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of dete...

Full description

Saved in:
Bibliographic Details
Main Authors: Perconti, P., Hilger, J., Loew, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 61
container_issue
container_start_page 56
container_title
container_volume
creator Perconti, P.
Hilger, J.
Loew, M.
description The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.
doi_str_mv 10.1109/AIPR.2003.1284249
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1284249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1284249</ieee_id><sourcerecordid>1284249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiKLM_QHzJH2i9yU2T5nHOTQdDxzb3OrLkzkZmW5r64L-34M7LgfMdDhzG7gUUQoB9nC7Xm0ICYCFkpaSyVyyzpgKjbSlBWnnDspS-YFRZGmvELXvaUx39mXiggfwQ24a7rutb52tK_CfF5pMPNfG3_Xz7zLfUpLbnizEfiztKw5HCHbs-uXOi7OIT9rGY72av-er9ZTmbrvIoTDnkNng4osJgnCktgbYowWsTpEfUIzHoq5MBp9BL5YwNqqpIa0SnAijECXv4341EdOj6-O3638PlKf4BvT1HmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Perconti, P. ; Hilger, J. ; Loew, M.</creator><creatorcontrib>Perconti, P. ; Hilger, J. ; Loew, M.</creatorcontrib><description>The US Army RDECOM CERDEC Night Vision &amp; Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense &amp; defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</description><identifier>ISBN: 9780769520292</identifier><identifier>ISBN: 0769520294</identifier><identifier>DOI: 10.1109/AIPR.2003.1284249</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic sensors ; Acoustic signal detection ; Cameras ; Image sensors ; Infrared image sensors ; Magnetic sensors ; Pixel ; Sensor fusion ; Testing ; Vehicle detection</subject><ispartof>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings, 2003, p.56-61</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1284249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1284249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perconti, P.</creatorcontrib><creatorcontrib>Hilger, J.</creatorcontrib><creatorcontrib>Loew, M.</creatorcontrib><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><title>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings</title><addtitle>AIPR</addtitle><description>The US Army RDECOM CERDEC Night Vision &amp; Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense &amp; defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</description><subject>Acoustic sensors</subject><subject>Acoustic signal detection</subject><subject>Cameras</subject><subject>Image sensors</subject><subject>Infrared image sensors</subject><subject>Magnetic sensors</subject><subject>Pixel</subject><subject>Sensor fusion</subject><subject>Testing</subject><subject>Vehicle detection</subject><isbn>9780769520292</isbn><isbn>0769520294</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMiKLM_QHzJH2i9yU2T5nHOTQdDxzb3OrLkzkZmW5r64L-34M7LgfMdDhzG7gUUQoB9nC7Xm0ICYCFkpaSyVyyzpgKjbSlBWnnDspS-YFRZGmvELXvaUx39mXiggfwQ24a7rutb52tK_CfF5pMPNfG3_Xz7zLfUpLbnizEfiztKw5HCHbs-uXOi7OIT9rGY72av-er9ZTmbrvIoTDnkNng4osJgnCktgbYowWsTpEfUIzHoq5MBp9BL5YwNqqpIa0SnAijECXv4341EdOj6-O3638PlKf4BvT1HmA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Perconti, P.</creator><creator>Hilger, J.</creator><creator>Loew, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><author>Perconti, P. ; Hilger, J. ; Loew, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic sensors</topic><topic>Acoustic signal detection</topic><topic>Cameras</topic><topic>Image sensors</topic><topic>Infrared image sensors</topic><topic>Magnetic sensors</topic><topic>Pixel</topic><topic>Sensor fusion</topic><topic>Testing</topic><topic>Vehicle detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Perconti, P.</creatorcontrib><creatorcontrib>Hilger, J.</creatorcontrib><creatorcontrib>Loew, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perconti, P.</au><au>Hilger, J.</au><au>Loew, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</atitle><btitle>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings</btitle><stitle>AIPR</stitle><date>2003</date><risdate>2003</risdate><spage>56</spage><epage>61</epage><pages>56-61</pages><isbn>9780769520292</isbn><isbn>0769520294</isbn><abstract>The US Army RDECOM CERDEC Night Vision &amp; Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense &amp; defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2003.1284249</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769520292
ispartof 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings, 2003, p.56-61
issn
language eng
recordid cdi_ieee_primary_1284249
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic sensors
Acoustic signal detection
Cameras
Image sensors
Infrared image sensors
Magnetic sensors
Pixel
Sensor fusion
Testing
Vehicle detection
title Vehicle detection approaches using the NVESD Sensor Fusion Testbed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vehicle%20detection%20approaches%20using%20the%20NVESD%20Sensor%20Fusion%20Testbed&rft.btitle=32nd%20Applied%20Imagery%20Pattern%20Recognition%20Workshop,%202003.%20Proceedings&rft.au=Perconti,%20P.&rft.date=2003&rft.spage=56&rft.epage=61&rft.pages=56-61&rft.isbn=9780769520292&rft.isbn_list=0769520294&rft_id=info:doi/10.1109/AIPR.2003.1284249&rft_dat=%3Cieee_6IE%3E1284249%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1284249&rfr_iscdi=true