Loading…
Vehicle detection approaches using the NVESD Sensor Fusion Testbed
The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of dete...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 61 |
container_issue | |
container_start_page | 56 |
container_title | |
container_volume | |
creator | Perconti, P. Hilger, J. Loew, M. |
description | The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision. |
doi_str_mv | 10.1109/AIPR.2003.1284249 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1284249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1284249</ieee_id><sourcerecordid>1284249</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiKLM_QHzJH2i9yU2T5nHOTQdDxzb3OrLkzkZmW5r64L-34M7LgfMdDhzG7gUUQoB9nC7Xm0ICYCFkpaSyVyyzpgKjbSlBWnnDspS-YFRZGmvELXvaUx39mXiggfwQ24a7rutb52tK_CfF5pMPNfG3_Xz7zLfUpLbnizEfiztKw5HCHbs-uXOi7OIT9rGY72av-er9ZTmbrvIoTDnkNng4osJgnCktgbYowWsTpEfUIzHoq5MBp9BL5YwNqqpIa0SnAijECXv4341EdOj6-O3638PlKf4BvT1HmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Perconti, P. ; Hilger, J. ; Loew, M.</creator><creatorcontrib>Perconti, P. ; Hilger, J. ; Loew, M.</creatorcontrib><description>The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</description><identifier>ISBN: 9780769520292</identifier><identifier>ISBN: 0769520294</identifier><identifier>DOI: 10.1109/AIPR.2003.1284249</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic sensors ; Acoustic signal detection ; Cameras ; Image sensors ; Infrared image sensors ; Magnetic sensors ; Pixel ; Sensor fusion ; Testing ; Vehicle detection</subject><ispartof>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings, 2003, p.56-61</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1284249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1284249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perconti, P.</creatorcontrib><creatorcontrib>Hilger, J.</creatorcontrib><creatorcontrib>Loew, M.</creatorcontrib><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><title>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings</title><addtitle>AIPR</addtitle><description>The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</description><subject>Acoustic sensors</subject><subject>Acoustic signal detection</subject><subject>Cameras</subject><subject>Image sensors</subject><subject>Infrared image sensors</subject><subject>Magnetic sensors</subject><subject>Pixel</subject><subject>Sensor fusion</subject><subject>Testing</subject><subject>Vehicle detection</subject><isbn>9780769520292</isbn><isbn>0769520294</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMiKLM_QHzJH2i9yU2T5nHOTQdDxzb3OrLkzkZmW5r64L-34M7LgfMdDhzG7gUUQoB9nC7Xm0ICYCFkpaSyVyyzpgKjbSlBWnnDspS-YFRZGmvELXvaUx39mXiggfwQ24a7rutb52tK_CfF5pMPNfG3_Xz7zLfUpLbnizEfiztKw5HCHbs-uXOi7OIT9rGY72av-er9ZTmbrvIoTDnkNng4osJgnCktgbYowWsTpEfUIzHoq5MBp9BL5YwNqqpIa0SnAijECXv4341EdOj6-O3638PlKf4BvT1HmA</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Perconti, P.</creator><creator>Hilger, J.</creator><creator>Loew, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</title><author>Perconti, P. ; Hilger, J. ; Loew, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acoustic sensors</topic><topic>Acoustic signal detection</topic><topic>Cameras</topic><topic>Image sensors</topic><topic>Infrared image sensors</topic><topic>Magnetic sensors</topic><topic>Pixel</topic><topic>Sensor fusion</topic><topic>Testing</topic><topic>Vehicle detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Perconti, P.</creatorcontrib><creatorcontrib>Hilger, J.</creatorcontrib><creatorcontrib>Loew, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perconti, P.</au><au>Hilger, J.</au><au>Loew, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vehicle detection approaches using the NVESD Sensor Fusion Testbed</atitle><btitle>32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings</btitle><stitle>AIPR</stitle><date>2003</date><risdate>2003</risdate><spage>56</spage><epage>61</epage><pages>56-61</pages><isbn>9780769520292</isbn><isbn>0769520294</isbn><abstract>The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) has a dynamic applied research program in sensor fusion for a wide variety of defense & defense related applications. This paper highlights efforts under the NVESD Sensor Fusion Testbed (SFTB) in the area of detection of moving vehicles with a network of image and acoustic sensors. A sensor data collection was designed and conducted using a variety of vehicles. Data from this collection included signature data of the vehicles as well as moving scenarios. Sensor fusion for detection and classification is performed at both the sensor level and the feature level, providing a basis for making tradeoffs between performance desired and resources required. Several classifier types are examined (parametric, nonparametric, learning). The combination of their decisions is used to make the final decision.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2003.1284249</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769520292 |
ispartof | 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings, 2003, p.56-61 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1284249 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic sensors Acoustic signal detection Cameras Image sensors Infrared image sensors Magnetic sensors Pixel Sensor fusion Testing Vehicle detection |
title | Vehicle detection approaches using the NVESD Sensor Fusion Testbed |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vehicle%20detection%20approaches%20using%20the%20NVESD%20Sensor%20Fusion%20Testbed&rft.btitle=32nd%20Applied%20Imagery%20Pattern%20Recognition%20Workshop,%202003.%20Proceedings&rft.au=Perconti,%20P.&rft.date=2003&rft.spage=56&rft.epage=61&rft.pages=56-61&rft.isbn=9780769520292&rft.isbn_list=0769520294&rft_id=info:doi/10.1109/AIPR.2003.1284249&rft_dat=%3Cieee_6IE%3E1284249%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9dc0b343d7a759e069320c67d2c336b3473c8f70a43c24a79d488e6633a4d0433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1284249&rfr_iscdi=true |