Loading…

Discretization of boundary integral equations by differential forms on dual grids

In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2004-03, Vol.40 (2), p.826-829
Main Authors: Kurz, S., Rain, O., Rischmuller, V., Rjasanow, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13
cites cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13
container_end_page 829
container_issue 2
container_start_page 826
container_title IEEE transactions on magnetics
container_volume 40
creator Kurz, S.
Rain, O.
Rischmuller, V.
Rjasanow, S.
description In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.
doi_str_mv 10.1109/TMAG.2004.824902
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1284542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1284542</ieee_id><sourcerecordid>28269477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUsR9Nb5JU3z4zimTmEiwjyHrElGRtduSXuYf72ZGww8hY_3eb8kD0K3GEYYg3yaf4ynIwJAR4JQCeQMDbCkOAdg8hwNALDIJWX0El3FuEojLTEM0Nezj1Wwnf_RnW-brHXZou0bo8Mu801nl0HXmd32f2nMFrvMeOdssE3nU-LasI5Z6pk-TcvgTbxGF07X0d4czyH6fn2ZT97y2ef0fTKe5VVBZZe7gpcEKqcLbIRdOCb0ghujC82oMBITkBJKWha8cpIZkJxLTqQwjJHKalwM0eNh7ya0297GTq3TV2xd68a2fVREECYp5wm8_weu2j406W1KCIoBgJcJggNUhTbGYJ3aBL9OFhQGtRes9oLVXrA6CE6Vh-NeHStdu6CbysdTr2SMc9jff3fgvLX2FBNBS0qKX2sUg58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884100075</pqid></control><display><type>article</type><title>Discretization of boundary integral equations by differential forms on dual grids</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</creator><creatorcontrib>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</creatorcontrib><description>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2004.824902</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Current density ; Electromagnetic forces ; Exact sciences and technology ; Finite difference methods ; Finite element methods ; Integral equations ; Kernel ; Laplace equations ; Magnetic fields ; Magnetic properties and materials ; Magnetism ; Magnetostatics ; Physics ; Rain</subject><ispartof>IEEE transactions on magnetics, 2004-03, Vol.40 (2), p.826-829</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</citedby><cites>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1284542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15667707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurz, S.</creatorcontrib><creatorcontrib>Rain, O.</creatorcontrib><creatorcontrib>Rischmuller, V.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><title>Discretization of boundary integral equations by differential forms on dual grids</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Current density</subject><subject>Electromagnetic forces</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite element methods</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetostatics</subject><subject>Physics</subject><subject>Rain</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMoOKd3wUsR9Nb5JU3z4zimTmEiwjyHrElGRtduSXuYf72ZGww8hY_3eb8kD0K3GEYYg3yaf4ynIwJAR4JQCeQMDbCkOAdg8hwNALDIJWX0El3FuEojLTEM0Nezj1Wwnf_RnW-brHXZou0bo8Mu801nl0HXmd32f2nMFrvMeOdssE3nU-LasI5Z6pk-TcvgTbxGF07X0d4czyH6fn2ZT97y2ef0fTKe5VVBZZe7gpcEKqcLbIRdOCb0ghujC82oMBITkBJKWha8cpIZkJxLTqQwjJHKalwM0eNh7ya0297GTq3TV2xd68a2fVREECYp5wm8_weu2j406W1KCIoBgJcJggNUhTbGYJ3aBL9OFhQGtRes9oLVXrA6CE6Vh-NeHStdu6CbysdTr2SMc9jff3fgvLX2FBNBS0qKX2sUg58</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Kurz, S.</creator><creator>Rain, O.</creator><creator>Rischmuller, V.</creator><creator>Rjasanow, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Discretization of boundary integral equations by differential forms on dual grids</title><author>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Current density</topic><topic>Electromagnetic forces</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite element methods</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetostatics</topic><topic>Physics</topic><topic>Rain</topic><toplevel>online_resources</toplevel><creatorcontrib>Kurz, S.</creatorcontrib><creatorcontrib>Rain, O.</creatorcontrib><creatorcontrib>Rischmuller, V.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurz, S.</au><au>Rain, O.</au><au>Rischmuller, V.</au><au>Rjasanow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of boundary integral equations by differential forms on dual grids</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2004-03-01</date><risdate>2004</risdate><volume>40</volume><issue>2</issue><spage>826</spage><epage>829</epage><pages>826-829</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2004.824902</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2004-03, Vol.40 (2), p.826-829
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1284542
source IEEE Electronic Library (IEL) Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Current density
Electromagnetic forces
Exact sciences and technology
Finite difference methods
Finite element methods
Integral equations
Kernel
Laplace equations
Magnetic fields
Magnetic properties and materials
Magnetism
Magnetostatics
Physics
Rain
title Discretization of boundary integral equations by differential forms on dual grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20boundary%20integral%20equations%20by%20differential%20forms%20on%20dual%20grids&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kurz,%20S.&rft.date=2004-03-01&rft.volume=40&rft.issue=2&rft.spage=826&rft.epage=829&rft.pages=826-829&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2004.824902&rft_dat=%3Cproquest_ieee_%3E28269477%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884100075&rft_id=info:pmid/&rft_ieee_id=1284542&rfr_iscdi=true