Loading…
Discretization of boundary integral equations by differential forms on dual grids
In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer...
Saved in:
Published in: | IEEE transactions on magnetics 2004-03, Vol.40 (2), p.826-829 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13 |
container_end_page | 829 |
container_issue | 2 |
container_start_page | 826 |
container_title | IEEE transactions on magnetics |
container_volume | 40 |
creator | Kurz, S. Rain, O. Rischmuller, V. Rjasanow, S. |
description | In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid. |
doi_str_mv | 10.1109/TMAG.2004.824902 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1284542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1284542</ieee_id><sourcerecordid>28269477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMoOKd3wUsR9Nb5JU3z4zimTmEiwjyHrElGRtduSXuYf72ZGww8hY_3eb8kD0K3GEYYg3yaf4ynIwJAR4JQCeQMDbCkOAdg8hwNALDIJWX0El3FuEojLTEM0Nezj1Wwnf_RnW-brHXZou0bo8Mu801nl0HXmd32f2nMFrvMeOdssE3nU-LasI5Z6pk-TcvgTbxGF07X0d4czyH6fn2ZT97y2ef0fTKe5VVBZZe7gpcEKqcLbIRdOCb0ghujC82oMBITkBJKWha8cpIZkJxLTqQwjJHKalwM0eNh7ya0297GTq3TV2xd68a2fVREECYp5wm8_weu2j406W1KCIoBgJcJggNUhTbGYJ3aBL9OFhQGtRes9oLVXrA6CE6Vh-NeHStdu6CbysdTr2SMc9jff3fgvLX2FBNBS0qKX2sUg58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884100075</pqid></control><display><type>article</type><title>Discretization of boundary integral equations by differential forms on dual grids</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</creator><creatorcontrib>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</creatorcontrib><description>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2004.824902</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Current density ; Electromagnetic forces ; Exact sciences and technology ; Finite difference methods ; Finite element methods ; Integral equations ; Kernel ; Laplace equations ; Magnetic fields ; Magnetic properties and materials ; Magnetism ; Magnetostatics ; Physics ; Rain</subject><ispartof>IEEE transactions on magnetics, 2004-03, Vol.40 (2), p.826-829</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</citedby><cites>FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1284542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15667707$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurz, S.</creatorcontrib><creatorcontrib>Rain, O.</creatorcontrib><creatorcontrib>Rischmuller, V.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><title>Discretization of boundary integral equations by differential forms on dual grids</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Current density</subject><subject>Electromagnetic forces</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite element methods</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Magnetic fields</subject><subject>Magnetic properties and materials</subject><subject>Magnetism</subject><subject>Magnetostatics</subject><subject>Physics</subject><subject>Rain</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMoOKd3wUsR9Nb5JU3z4zimTmEiwjyHrElGRtduSXuYf72ZGww8hY_3eb8kD0K3GEYYg3yaf4ynIwJAR4JQCeQMDbCkOAdg8hwNALDIJWX0El3FuEojLTEM0Nezj1Wwnf_RnW-brHXZou0bo8Mu801nl0HXmd32f2nMFrvMeOdssE3nU-LasI5Z6pk-TcvgTbxGF07X0d4czyH6fn2ZT97y2ef0fTKe5VVBZZe7gpcEKqcLbIRdOCb0ghujC82oMBITkBJKWha8cpIZkJxLTqQwjJHKalwM0eNh7ya0297GTq3TV2xd68a2fVREECYp5wm8_weu2j406W1KCIoBgJcJggNUhTbGYJ3aBL9OFhQGtRes9oLVXrA6CE6Vh-NeHStdu6CbysdTr2SMc9jff3fgvLX2FBNBS0qKX2sUg58</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Kurz, S.</creator><creator>Rain, O.</creator><creator>Rischmuller, V.</creator><creator>Rjasanow, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Discretization of boundary integral equations by differential forms on dual grids</title><author>Kurz, S. ; Rain, O. ; Rischmuller, V. ; Rjasanow, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Current density</topic><topic>Electromagnetic forces</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite element methods</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Magnetic fields</topic><topic>Magnetic properties and materials</topic><topic>Magnetism</topic><topic>Magnetostatics</topic><topic>Physics</topic><topic>Rain</topic><toplevel>online_resources</toplevel><creatorcontrib>Kurz, S.</creatorcontrib><creatorcontrib>Rain, O.</creatorcontrib><creatorcontrib>Rischmuller, V.</creatorcontrib><creatorcontrib>Rjasanow, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurz, S.</au><au>Rain, O.</au><au>Rischmuller, V.</au><au>Rjasanow, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of boundary integral equations by differential forms on dual grids</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2004-03-01</date><risdate>2004</risdate><volume>40</volume><issue>2</issue><spage>826</spage><epage>829</epage><pages>826-829</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>In this paper, some integral equations of electromagnetics are reformulated in terms of differential forms. The integral kernels become double forms. These are forms in one space with coefficients that are forms in another space. The results correspond closely to the usual treatment, but are clearer and more intuitive. Since differential forms possess discrete counterparts, the discrete differential forms, such schemes lend themselves naturally to discretization. As an example, a boundary integral equation for the double curl operator is considered. The discretization scheme generalizes the well-known collocation technique by using de Rham maps. Depending on the integral operator to be discretized, the 1-form valued residual is forced to be zero either over the 1-chains of the primal or the dual grid.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2004.824902</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2004-03, Vol.40 (2), p.826-829 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_1284542 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Current density Electromagnetic forces Exact sciences and technology Finite difference methods Finite element methods Integral equations Kernel Laplace equations Magnetic fields Magnetic properties and materials Magnetism Magnetostatics Physics Rain |
title | Discretization of boundary integral equations by differential forms on dual grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20boundary%20integral%20equations%20by%20differential%20forms%20on%20dual%20grids&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kurz,%20S.&rft.date=2004-03-01&rft.volume=40&rft.issue=2&rft.spage=826&rft.epage=829&rft.pages=826-829&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2004.824902&rft_dat=%3Cproquest_ieee_%3E28269477%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-f37520cfa31d8ebf68ab7dda3a648d912099054537cf96d097797298d662cea13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884100075&rft_id=info:pmid/&rft_ieee_id=1284542&rfr_iscdi=true |