Loading…

Reliable low-power digital signal processing via reduced precision redundancy

In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2004-05, Vol.12 (5), p.497-510
Main Authors: Byonghyo Shim, Sridhara, S.R., Shanbhag, N.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183
cites cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183
container_end_page 510
container_issue 5
container_start_page 497
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 12
creator Byonghyo Shim
Sridhara, S.R.
Shanbhag, N.R.
description In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.
doi_str_mv 10.1109/TVLSI.2004.826201
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1291428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1291428</ieee_id><sourcerecordid>901651554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhoMoWKs_QLwEQT2lzn5ku3uU4kehImj1GjabSdmSJnW3sfTfu20KBQ_OZYbZZ15m9o2iSwIDQkDdT78mH-MBBeADSQUFchT1SJoOExXiONQgWCIpgdPozPs5AOFcQS96fcfK6rzCuGrWybJZo4sLO7MrXcXezuqQlq4x6L2tZ_GP1bHDojVYhDYa621T7zp1oWuzOY9OSl15vNjnfvT59DgdvSSTt-fx6GGSGCbZKpEKtSyEkpLxAiTKPFU8LYExZYRgeUE0gKasFJKLIWpBhmYIRBumcyyJZP3ortMNu3236FfZwnqDVaVrbFqfKSAiDefzQN7-S1KZcmCKBvD6DzhvWhfuD2oUtptKEiDSQcY13jsss6WzC-02GYFs60O28yHb-pB1PoSZm72w9kZXpQsfZf1hMBVS8h131XEWEQ_PVBFOJfsFEeWQXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920883481</pqid></control><display><type>article</type><title>Reliable low-power digital signal processing via reduced precision redundancy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</creator><creatorcontrib>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</creatorcontrib><description>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2004.826201</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Design. Technologies. Operation analysis. Testing ; Digital filters ; Digital signal processing ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy conservation ; Exact sciences and technology ; Fast Fourier transforms ; Filtering ; Frequency filters ; Impulse response ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Noise reduction ; Quadrature phase shift keying ; Redundancy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal processing algorithms ; Signal to noise ratio ; Testing, measurement, noise and reliability ; Very large scale integration ; Voltage</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2004-05, Vol.12 (5), p.497-510</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</citedby><cites>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1291428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15688401$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byonghyo Shim</creatorcontrib><creatorcontrib>Sridhara, S.R.</creatorcontrib><creatorcontrib>Shanbhag, N.R.</creatorcontrib><title>Reliable low-power digital signal processing via reduced precision redundancy</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital filters</subject><subject>Digital signal processing</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Filtering</subject><subject>Frequency filters</subject><subject>Impulse response</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Noise reduction</subject><subject>Quadrature phase shift keying</subject><subject>Redundancy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Testing, measurement, noise and reliability</subject><subject>Very large scale integration</subject><subject>Voltage</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhoMoWKs_QLwEQT2lzn5ku3uU4kehImj1GjabSdmSJnW3sfTfu20KBQ_OZYbZZ15m9o2iSwIDQkDdT78mH-MBBeADSQUFchT1SJoOExXiONQgWCIpgdPozPs5AOFcQS96fcfK6rzCuGrWybJZo4sLO7MrXcXezuqQlq4x6L2tZ_GP1bHDojVYhDYa621T7zp1oWuzOY9OSl15vNjnfvT59DgdvSSTt-fx6GGSGCbZKpEKtSyEkpLxAiTKPFU8LYExZYRgeUE0gKasFJKLIWpBhmYIRBumcyyJZP3ortMNu3236FfZwnqDVaVrbFqfKSAiDefzQN7-S1KZcmCKBvD6DzhvWhfuD2oUtptKEiDSQcY13jsss6WzC-02GYFs60O28yHb-pB1PoSZm72w9kZXpQsfZf1hMBVS8h131XEWEQ_PVBFOJfsFEeWQXw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Byonghyo Shim</creator><creator>Sridhara, S.R.</creator><creator>Shanbhag, N.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040501</creationdate><title>Reliable low-power digital signal processing via reduced precision redundancy</title><author>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital filters</topic><topic>Digital signal processing</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Filtering</topic><topic>Frequency filters</topic><topic>Impulse response</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Noise reduction</topic><topic>Quadrature phase shift keying</topic><topic>Redundancy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Testing, measurement, noise and reliability</topic><topic>Very large scale integration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byonghyo Shim</creatorcontrib><creatorcontrib>Sridhara, S.R.</creatorcontrib><creatorcontrib>Shanbhag, N.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byonghyo Shim</au><au>Sridhara, S.R.</au><au>Shanbhag, N.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable low-power digital signal processing via reduced precision redundancy</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>12</volume><issue>5</issue><spage>497</spage><epage>510</epage><pages>497-510</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2004.826201</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2004-05, Vol.12 (5), p.497-510
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_1291428
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Circuit properties
Design. Technologies. Operation analysis. Testing
Digital filters
Digital signal processing
Electric potential
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Energy conservation
Exact sciences and technology
Fast Fourier transforms
Filtering
Frequency filters
Impulse response
Integrated circuits
Integrated circuits by function (including memories and processors)
Noise reduction
Quadrature phase shift keying
Redundancy
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal processing algorithms
Signal to noise ratio
Testing, measurement, noise and reliability
Very large scale integration
Voltage
title Reliable low-power digital signal processing via reduced precision redundancy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20low-power%20digital%20signal%20processing%20via%20reduced%20precision%20redundancy&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Byonghyo%20Shim&rft.date=2004-05-01&rft.volume=12&rft.issue=5&rft.spage=497&rft.epage=510&rft.pages=497-510&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2004.826201&rft_dat=%3Cproquest_ieee_%3E901651554%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920883481&rft_id=info:pmid/&rft_ieee_id=1291428&rfr_iscdi=true