Loading…
Reliable low-power digital signal processing via reduced precision redundancy
In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2004-05, Vol.12 (5), p.497-510 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183 |
container_end_page | 510 |
container_issue | 5 |
container_start_page | 497 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 12 |
creator | Byonghyo Shim Sridhara, S.R. Shanbhag, N.R. |
description | In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively. |
doi_str_mv | 10.1109/TVLSI.2004.826201 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1291428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1291428</ieee_id><sourcerecordid>901651554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</originalsourceid><addsrcrecordid>eNp9kU1Lw0AQhoMoWKs_QLwEQT2lzn5ku3uU4kehImj1GjabSdmSJnW3sfTfu20KBQ_OZYbZZ15m9o2iSwIDQkDdT78mH-MBBeADSQUFchT1SJoOExXiONQgWCIpgdPozPs5AOFcQS96fcfK6rzCuGrWybJZo4sLO7MrXcXezuqQlq4x6L2tZ_GP1bHDojVYhDYa621T7zp1oWuzOY9OSl15vNjnfvT59DgdvSSTt-fx6GGSGCbZKpEKtSyEkpLxAiTKPFU8LYExZYRgeUE0gKasFJKLIWpBhmYIRBumcyyJZP3ortMNu3236FfZwnqDVaVrbFqfKSAiDefzQN7-S1KZcmCKBvD6DzhvWhfuD2oUtptKEiDSQcY13jsss6WzC-02GYFs60O28yHb-pB1PoSZm72w9kZXpQsfZf1hMBVS8h131XEWEQ_PVBFOJfsFEeWQXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920883481</pqid></control><display><type>article</type><title>Reliable low-power digital signal processing via reduced precision redundancy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</creator><creatorcontrib>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</creatorcontrib><description>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2004.826201</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Applied sciences ; Circuit properties ; Design. Technologies. Operation analysis. Testing ; Digital filters ; Digital signal processing ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Energy conservation ; Exact sciences and technology ; Fast Fourier transforms ; Filtering ; Frequency filters ; Impulse response ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Noise reduction ; Quadrature phase shift keying ; Redundancy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal processing algorithms ; Signal to noise ratio ; Testing, measurement, noise and reliability ; Very large scale integration ; Voltage</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2004-05, Vol.12 (5), p.497-510</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</citedby><cites>FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1291428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15688401$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Byonghyo Shim</creatorcontrib><creatorcontrib>Sridhara, S.R.</creatorcontrib><creatorcontrib>Shanbhag, N.R.</creatorcontrib><title>Reliable low-power digital signal processing via reduced precision redundancy</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital filters</subject><subject>Digital signal processing</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Energy conservation</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Filtering</subject><subject>Frequency filters</subject><subject>Impulse response</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Noise reduction</subject><subject>Quadrature phase shift keying</subject><subject>Redundancy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Testing, measurement, noise and reliability</subject><subject>Very large scale integration</subject><subject>Voltage</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU1Lw0AQhoMoWKs_QLwEQT2lzn5ku3uU4kehImj1GjabSdmSJnW3sfTfu20KBQ_OZYbZZ15m9o2iSwIDQkDdT78mH-MBBeADSQUFchT1SJoOExXiONQgWCIpgdPozPs5AOFcQS96fcfK6rzCuGrWybJZo4sLO7MrXcXezuqQlq4x6L2tZ_GP1bHDojVYhDYa621T7zp1oWuzOY9OSl15vNjnfvT59DgdvSSTt-fx6GGSGCbZKpEKtSyEkpLxAiTKPFU8LYExZYRgeUE0gKasFJKLIWpBhmYIRBumcyyJZP3ortMNu3236FfZwnqDVaVrbFqfKSAiDefzQN7-S1KZcmCKBvD6DzhvWhfuD2oUtptKEiDSQcY13jsss6WzC-02GYFs60O28yHb-pB1PoSZm72w9kZXpQsfZf1hMBVS8h131XEWEQ_PVBFOJfsFEeWQXw</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Byonghyo Shim</creator><creator>Sridhara, S.R.</creator><creator>Shanbhag, N.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040501</creationdate><title>Reliable low-power digital signal processing via reduced precision redundancy</title><author>Byonghyo Shim ; Sridhara, S.R. ; Shanbhag, N.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital filters</topic><topic>Digital signal processing</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Energy conservation</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Filtering</topic><topic>Frequency filters</topic><topic>Impulse response</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Noise reduction</topic><topic>Quadrature phase shift keying</topic><topic>Redundancy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Testing, measurement, noise and reliability</topic><topic>Very large scale integration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byonghyo Shim</creatorcontrib><creatorcontrib>Sridhara, S.R.</creatorcontrib><creatorcontrib>Shanbhag, N.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byonghyo Shim</au><au>Sridhara, S.R.</au><au>Shanbhag, N.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable low-power digital signal processing via reduced precision redundancy</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2004-05-01</date><risdate>2004</risdate><volume>12</volume><issue>5</issue><spage>497</spage><epage>510</epage><pages>497-510</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2004.826201</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2004-05, Vol.12 (5), p.497-510 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_ieee_primary_1291428 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Circuit properties Design. Technologies. Operation analysis. Testing Digital filters Digital signal processing Electric potential Electric, optical and optoelectronic circuits Electronic circuits Electronics Energy conservation Exact sciences and technology Fast Fourier transforms Filtering Frequency filters Impulse response Integrated circuits Integrated circuits by function (including memories and processors) Noise reduction Quadrature phase shift keying Redundancy Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal processing algorithms Signal to noise ratio Testing, measurement, noise and reliability Very large scale integration Voltage |
title | Reliable low-power digital signal processing via reduced precision redundancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20low-power%20digital%20signal%20processing%20via%20reduced%20precision%20redundancy&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Byonghyo%20Shim&rft.date=2004-05-01&rft.volume=12&rft.issue=5&rft.spage=497&rft.epage=510&rft.pages=497-510&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2004.826201&rft_dat=%3Cproquest_ieee_%3E901651554%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-89ea8d698834d08e8b5945f0339c663bd1a00a23f68467ea617c701ac3abef183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920883481&rft_id=info:pmid/&rft_ieee_id=1291428&rfr_iscdi=true |