Loading…

Nonlinear filtering and time varying Schrodinger equation

Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2004-01, Vol.40 (1), p.284-292
Main Authors: Shing-Tung Yau, Yau, S.S.-T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 292
container_issue 1
container_start_page 284
container_title IEEE transactions on aerospace and electronic systems
container_volume 40
creator Shing-Tung Yau
Yau, S.S.-T.
description Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.
doi_str_mv 10.1109/TAES.2004.1292160
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1292160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1292160</ieee_id><sourcerecordid>2426458831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOBFFKzVHyBeggc9pc6-srvHUuoDih7ae9hkZ3VLmrSbRPDfN6U9eRBP8-BjYGYIuaUwoRTM02o6X04YgJhQZhjN4IyMqJQqNRnwczICoDo1TNJLctW266EUWvARMe9NXYUabUx8qDqMof5MbO2SLmww-bbx59BYll-xcUOGMcFdb7vQ1NfkwtuqxZtTHJPV83w1e00XHy9vs-kiDQxMl2alcLwwttCAVFpAYZgvskJRpR31mDmumLLWlwyU8sJn2npXCqWkM7rgY_J4HLuNza7Htss3oS2xqmyNTd_m2mSMgwEzyIc_JRsoGKX-AYXUgokB3v-C66aP9bBtrjWXhnJ6mHZ3RAER820Mm-Fo-ekLfA9ks3qR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883591317</pqid></control><display><type>article</type><title>Nonlinear filtering and time varying Schrodinger equation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shing-Tung Yau ; Yau, S.S.-T.</creator><creatorcontrib>Shing-Tung Yau ; Yau, S.S.-T.</creatorcontrib><description>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2004.1292160</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Algebra ; Differential equations ; Electronic systems ; Filtering ; Filtering theory ; Filtration ; Initial conditions ; Mathematics ; Nonlinear equations ; Nonlinearity ; Partial differential equations ; Polynomials ; Power series ; Quantum mechanics ; Schrodinger equation ; Schroedinger equation ; Time varying systems</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2004-01, Vol.40 (1), p.284-292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1292160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shing-Tung Yau</creatorcontrib><creatorcontrib>Yau, S.S.-T.</creatorcontrib><title>Nonlinear filtering and time varying Schrodinger equation</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</description><subject>Aircraft components</subject><subject>Algebra</subject><subject>Differential equations</subject><subject>Electronic systems</subject><subject>Filtering</subject><subject>Filtering theory</subject><subject>Filtration</subject><subject>Initial conditions</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Power series</subject><subject>Quantum mechanics</subject><subject>Schrodinger equation</subject><subject>Schroedinger equation</subject><subject>Time varying systems</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQAOBFFKzVHyBeggc9pc6-srvHUuoDih7ae9hkZ3VLmrSbRPDfN6U9eRBP8-BjYGYIuaUwoRTM02o6X04YgJhQZhjN4IyMqJQqNRnwczICoDo1TNJLctW266EUWvARMe9NXYUabUx8qDqMof5MbO2SLmww-bbx59BYll-xcUOGMcFdb7vQ1NfkwtuqxZtTHJPV83w1e00XHy9vs-kiDQxMl2alcLwwttCAVFpAYZgvskJRpR31mDmumLLWlwyU8sJn2npXCqWkM7rgY_J4HLuNza7Htss3oS2xqmyNTd_m2mSMgwEzyIc_JRsoGKX-AYXUgokB3v-C66aP9bBtrjWXhnJ6mHZ3RAER820Mm-Fo-ekLfA9ks3qR</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Shing-Tung Yau</creator><creator>Yau, S.S.-T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200401</creationdate><title>Nonlinear filtering and time varying Schrodinger equation</title><author>Shing-Tung Yau ; Yau, S.S.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aircraft components</topic><topic>Algebra</topic><topic>Differential equations</topic><topic>Electronic systems</topic><topic>Filtering</topic><topic>Filtering theory</topic><topic>Filtration</topic><topic>Initial conditions</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Power series</topic><topic>Quantum mechanics</topic><topic>Schrodinger equation</topic><topic>Schroedinger equation</topic><topic>Time varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shing-Tung Yau</creatorcontrib><creatorcontrib>Yau, S.S.-T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shing-Tung Yau</au><au>Yau, S.S.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear filtering and time varying Schrodinger equation</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2004-01</date><risdate>2004</risdate><volume>40</volume><issue>1</issue><spage>284</spage><epage>292</epage><pages>284-292</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2004.1292160</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2004-01, Vol.40 (1), p.284-292
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_1292160
source IEEE Electronic Library (IEL) Journals
subjects Aircraft components
Algebra
Differential equations
Electronic systems
Filtering
Filtering theory
Filtration
Initial conditions
Mathematics
Nonlinear equations
Nonlinearity
Partial differential equations
Polynomials
Power series
Quantum mechanics
Schrodinger equation
Schroedinger equation
Time varying systems
title Nonlinear filtering and time varying Schrodinger equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20filtering%20and%20time%20varying%20Schrodinger%20equation&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Shing-Tung%20Yau&rft.date=2004-01&rft.volume=40&rft.issue=1&rft.spage=284&rft.epage=292&rft.pages=284-292&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2004.1292160&rft_dat=%3Cproquest_ieee_%3E2426458831%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883591317&rft_id=info:pmid/&rft_ieee_id=1292160&rfr_iscdi=true