Loading…
Nonlinear filtering and time varying Schrodinger equation
Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition....
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2004-01, Vol.40 (1), p.284-292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 292 |
container_issue | 1 |
container_start_page | 284 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 40 |
creator | Shing-Tung Yau Yau, S.S.-T. |
description | Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method. |
doi_str_mv | 10.1109/TAES.2004.1292160 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1292160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1292160</ieee_id><sourcerecordid>2426458831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOBFFKzVHyBeggc9pc6-srvHUuoDih7ae9hkZ3VLmrSbRPDfN6U9eRBP8-BjYGYIuaUwoRTM02o6X04YgJhQZhjN4IyMqJQqNRnwczICoDo1TNJLctW266EUWvARMe9NXYUabUx8qDqMof5MbO2SLmww-bbx59BYll-xcUOGMcFdb7vQ1NfkwtuqxZtTHJPV83w1e00XHy9vs-kiDQxMl2alcLwwttCAVFpAYZgvskJRpR31mDmumLLWlwyU8sJn2npXCqWkM7rgY_J4HLuNza7Htss3oS2xqmyNTd_m2mSMgwEzyIc_JRsoGKX-AYXUgokB3v-C66aP9bBtrjWXhnJ6mHZ3RAER820Mm-Fo-ekLfA9ks3qR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883591317</pqid></control><display><type>article</type><title>Nonlinear filtering and time varying Schrodinger equation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Shing-Tung Yau ; Yau, S.S.-T.</creator><creatorcontrib>Shing-Tung Yau ; Yau, S.S.-T.</creatorcontrib><description>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2004.1292160</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Algebra ; Differential equations ; Electronic systems ; Filtering ; Filtering theory ; Filtration ; Initial conditions ; Mathematics ; Nonlinear equations ; Nonlinearity ; Partial differential equations ; Polynomials ; Power series ; Quantum mechanics ; Schrodinger equation ; Schroedinger equation ; Time varying systems</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2004-01, Vol.40 (1), p.284-292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1292160$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Shing-Tung Yau</creatorcontrib><creatorcontrib>Yau, S.S.-T.</creatorcontrib><title>Nonlinear filtering and time varying Schrodinger equation</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</description><subject>Aircraft components</subject><subject>Algebra</subject><subject>Differential equations</subject><subject>Electronic systems</subject><subject>Filtering</subject><subject>Filtering theory</subject><subject>Filtration</subject><subject>Initial conditions</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Power series</subject><subject>Quantum mechanics</subject><subject>Schrodinger equation</subject><subject>Schroedinger equation</subject><subject>Time varying systems</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQAOBFFKzVHyBeggc9pc6-srvHUuoDih7ae9hkZ3VLmrSbRPDfN6U9eRBP8-BjYGYIuaUwoRTM02o6X04YgJhQZhjN4IyMqJQqNRnwczICoDo1TNJLctW266EUWvARMe9NXYUabUx8qDqMof5MbO2SLmww-bbx59BYll-xcUOGMcFdb7vQ1NfkwtuqxZtTHJPV83w1e00XHy9vs-kiDQxMl2alcLwwttCAVFpAYZgvskJRpR31mDmumLLWlwyU8sJn2npXCqWkM7rgY_J4HLuNza7Htss3oS2xqmyNTd_m2mSMgwEzyIc_JRsoGKX-AYXUgokB3v-C66aP9bBtrjWXhnJ6mHZ3RAER820Mm-Fo-ekLfA9ks3qR</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Shing-Tung Yau</creator><creator>Yau, S.S.-T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>200401</creationdate><title>Nonlinear filtering and time varying Schrodinger equation</title><author>Shing-Tung Yau ; Yau, S.S.-T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aircraft components</topic><topic>Algebra</topic><topic>Differential equations</topic><topic>Electronic systems</topic><topic>Filtering</topic><topic>Filtering theory</topic><topic>Filtration</topic><topic>Initial conditions</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Power series</topic><topic>Quantum mechanics</topic><topic>Schrodinger equation</topic><topic>Schroedinger equation</topic><topic>Time varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shing-Tung Yau</creatorcontrib><creatorcontrib>Yau, S.S.-T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shing-Tung Yau</au><au>Yau, S.S.-T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear filtering and time varying Schrodinger equation</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2004-01</date><risdate>2004</risdate><volume>40</volume><issue>1</issue><spage>284</spage><epage>292</epage><pages>284-292</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Based on our previous work we have successfully reduced the nonlinear filtering problem for Yau filtering system to the time-varying Schrodinger equation. In order to solve the nonlinear filtering problem, one needs to solve the time-varying Schrodinger equation with an arbitrary initial condition. We then solve the time-varying Schrodinger equation by constructing the fundamental solution explicitly via a system of nonlinear ODES in case the potential is quadratic in state variables. This system of nonlinear ODES is solved explicitly by the power series method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2004.1292160</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2004-01, Vol.40 (1), p.284-292 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_1292160 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aircraft components Algebra Differential equations Electronic systems Filtering Filtering theory Filtration Initial conditions Mathematics Nonlinear equations Nonlinearity Partial differential equations Polynomials Power series Quantum mechanics Schrodinger equation Schroedinger equation Time varying systems |
title | Nonlinear filtering and time varying Schrodinger equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20filtering%20and%20time%20varying%20Schrodinger%20equation&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Shing-Tung%20Yau&rft.date=2004-01&rft.volume=40&rft.issue=1&rft.spage=284&rft.epage=292&rft.pages=284-292&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2004.1292160&rft_dat=%3Cproquest_ieee_%3E2426458831%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i209t-6c4d3b9ab80e15a0e492fb6b7178d1fe6d3727aafc2077f4f68afdc4775d98b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883591317&rft_id=info:pmid/&rft_ieee_id=1292160&rfr_iscdi=true |