Loading…

Parameter identification of induction motors using differential evolution

Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determi...

Full description

Saved in:
Bibliographic Details
Main Authors: Ursem, R.K., Vadstrup, P.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43
cites
container_end_page 796 Vol.2
container_issue
container_start_page 790
container_title
container_volume 2
creator Ursem, R.K.
Vadstrup, P.
description Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.
doi_str_mv 10.1109/CEC.2003.1299748
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1299748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1299748</ieee_id><sourcerecordid>1299748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMiqHP3gjf5A635aptcSpk6GMyL7Xrk441E2kaSVPDf2-kOHF4OPBzeg9ADJTWlRD31m75mhPCaMqU6Ia_QHekk4YsFuUHrnD_JItFw1XS3aPuukx6hQMLBwVSCD1aXECccPQ6Tm-1fGGOJKeM5h-kDu-A9pDOsBwzfcZjPzD269nrIsL7cFTq-bA79W7Xbv277511lGWOl4sY621JhpAWlDXPgtOegfANdq8Exqww13DMi6UKa5XnnG-8kZaBaLfgKPf73BgA4faUw6vRzuqzlv9nqTaU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter identification of induction motors using differential evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ursem, R.K. ; Vadstrup, P.</creator><creatorcontrib>Ursem, R.K. ; Vadstrup, P.</creatorcontrib><description>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</description><identifier>ISBN: 0780378040</identifier><identifier>ISBN: 9780780378049</identifier><identifier>DOI: 10.1109/CEC.2003.1299748</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Evolutionary computation ; Induction motors ; Linear systems ; Magnetic flux ; Parameter estimation ; Rotors ; Saturation magnetization ; Stators ; Stochastic processes</subject><ispartof>The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.2, p.790-796 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1299748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1299748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ursem, R.K.</creatorcontrib><creatorcontrib>Vadstrup, P.</creatorcontrib><title>Parameter identification of induction motors using differential evolution</title><title>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</title><addtitle>CEC</addtitle><description>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</description><subject>Control systems</subject><subject>Evolutionary computation</subject><subject>Induction motors</subject><subject>Linear systems</subject><subject>Magnetic flux</subject><subject>Parameter estimation</subject><subject>Rotors</subject><subject>Saturation magnetization</subject><subject>Stators</subject><subject>Stochastic processes</subject><isbn>0780378040</isbn><isbn>9780780378049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhQMiqHP3gjf5A635aptcSpk6GMyL7Xrk441E2kaSVPDf2-kOHF4OPBzeg9ADJTWlRD31m75mhPCaMqU6Ia_QHekk4YsFuUHrnD_JItFw1XS3aPuukx6hQMLBwVSCD1aXECccPQ6Tm-1fGGOJKeM5h-kDu-A9pDOsBwzfcZjPzD269nrIsL7cFTq-bA79W7Xbv277511lGWOl4sY621JhpAWlDXPgtOegfANdq8Exqww13DMi6UKa5XnnG-8kZaBaLfgKPf73BgA4faUw6vRzuqzlv9nqTaU</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ursem, R.K.</creator><creator>Vadstrup, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Parameter identification of induction motors using differential evolution</title><author>Ursem, R.K. ; Vadstrup, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Control systems</topic><topic>Evolutionary computation</topic><topic>Induction motors</topic><topic>Linear systems</topic><topic>Magnetic flux</topic><topic>Parameter estimation</topic><topic>Rotors</topic><topic>Saturation magnetization</topic><topic>Stators</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Ursem, R.K.</creatorcontrib><creatorcontrib>Vadstrup, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ursem, R.K.</au><au>Vadstrup, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter identification of induction motors using differential evolution</atitle><btitle>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</btitle><stitle>CEC</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>790</spage><epage>796 Vol.2</epage><pages>790-796 Vol.2</pages><isbn>0780378040</isbn><isbn>9780780378049</isbn><abstract>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2003.1299748</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780378040
ispartof The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.2, p.790-796 Vol.2
issn
language eng
recordid cdi_ieee_primary_1299748
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Evolutionary computation
Induction motors
Linear systems
Magnetic flux
Parameter estimation
Rotors
Saturation magnetization
Stators
Stochastic processes
title Parameter identification of induction motors using differential evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20identification%20of%20induction%20motors%20using%20differential%20evolution&rft.btitle=The%202003%20Congress%20on%20Evolutionary%20Computation,%202003.%20CEC%20'03&rft.au=Ursem,%20R.K.&rft.date=2003&rft.volume=2&rft.spage=790&rft.epage=796%20Vol.2&rft.pages=790-796%20Vol.2&rft.isbn=0780378040&rft.isbn_list=9780780378049&rft_id=info:doi/10.1109/CEC.2003.1299748&rft_dat=%3Cieee_6IE%3E1299748%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1299748&rfr_iscdi=true