Loading…
Parameter identification of induction motors using differential evolution
Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43 |
---|---|
cites | |
container_end_page | 796 Vol.2 |
container_issue | |
container_start_page | 790 |
container_title | |
container_volume | 2 |
creator | Ursem, R.K. Vadstrup, P. |
description | Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems. |
doi_str_mv | 10.1109/CEC.2003.1299748 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1299748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1299748</ieee_id><sourcerecordid>1299748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMiqHP3gjf5A635aptcSpk6GMyL7Xrk441E2kaSVPDf2-kOHF4OPBzeg9ADJTWlRD31m75mhPCaMqU6Ia_QHekk4YsFuUHrnD_JItFw1XS3aPuukx6hQMLBwVSCD1aXECccPQ6Tm-1fGGOJKeM5h-kDu-A9pDOsBwzfcZjPzD269nrIsL7cFTq-bA79W7Xbv277511lGWOl4sY621JhpAWlDXPgtOegfANdq8Exqww13DMi6UKa5XnnG-8kZaBaLfgKPf73BgA4faUw6vRzuqzlv9nqTaU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter identification of induction motors using differential evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ursem, R.K. ; Vadstrup, P.</creator><creatorcontrib>Ursem, R.K. ; Vadstrup, P.</creatorcontrib><description>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</description><identifier>ISBN: 0780378040</identifier><identifier>ISBN: 9780780378049</identifier><identifier>DOI: 10.1109/CEC.2003.1299748</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Evolutionary computation ; Induction motors ; Linear systems ; Magnetic flux ; Parameter estimation ; Rotors ; Saturation magnetization ; Stators ; Stochastic processes</subject><ispartof>The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.2, p.790-796 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1299748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1299748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ursem, R.K.</creatorcontrib><creatorcontrib>Vadstrup, P.</creatorcontrib><title>Parameter identification of induction motors using differential evolution</title><title>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</title><addtitle>CEC</addtitle><description>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</description><subject>Control systems</subject><subject>Evolutionary computation</subject><subject>Induction motors</subject><subject>Linear systems</subject><subject>Magnetic flux</subject><subject>Parameter estimation</subject><subject>Rotors</subject><subject>Saturation magnetization</subject><subject>Stators</subject><subject>Stochastic processes</subject><isbn>0780378040</isbn><isbn>9780780378049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2003</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAYhQMiqHP3gjf5A635aptcSpk6GMyL7Xrk441E2kaSVPDf2-kOHF4OPBzeg9ADJTWlRD31m75mhPCaMqU6Ia_QHekk4YsFuUHrnD_JItFw1XS3aPuukx6hQMLBwVSCD1aXECccPQ6Tm-1fGGOJKeM5h-kDu-A9pDOsBwzfcZjPzD269nrIsL7cFTq-bA79W7Xbv277511lGWOl4sY621JhpAWlDXPgtOegfANdq8Exqww13DMi6UKa5XnnG-8kZaBaLfgKPf73BgA4faUw6vRzuqzlv9nqTaU</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Ursem, R.K.</creator><creator>Vadstrup, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2003</creationdate><title>Parameter identification of induction motors using differential evolution</title><author>Ursem, R.K. ; Vadstrup, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Control systems</topic><topic>Evolutionary computation</topic><topic>Induction motors</topic><topic>Linear systems</topic><topic>Magnetic flux</topic><topic>Parameter estimation</topic><topic>Rotors</topic><topic>Saturation magnetization</topic><topic>Stators</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Ursem, R.K.</creatorcontrib><creatorcontrib>Vadstrup, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ursem, R.K.</au><au>Vadstrup, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter identification of induction motors using differential evolution</atitle><btitle>The 2003 Congress on Evolutionary Computation, 2003. CEC '03</btitle><stitle>CEC</stitle><date>2003</date><risdate>2003</risdate><volume>2</volume><spage>790</spage><epage>796 Vol.2</epage><pages>790-796 Vol.2</pages><isbn>0780378040</isbn><isbn>9780780378049</isbn><abstract>Parameter identification of system models is a fundamental step in the process of designing a controller for a system. In control engineering, a wide selection of analytic identification techniques exists for linear systems, but not for nonlinear systems. Instead, the model parameters may be determined by an optimization algorithm by minimizing the error between model output and measured data. We apply the differential evolution algorithm to parameter identification of two induction motors. The motors are used in the house circulation pumps produced by the Danish pump manufacturer Grundfos A/S. The experiments presented use differential evolution, and is a follow-up study of an comparison of eight stochastic search algorithms on the two motor identification problems. In conclusion, the differential evolution algorithm outperformed the previously best known algorithms on both problems.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2003.1299748</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780378040 |
ispartof | The 2003 Congress on Evolutionary Computation, 2003. CEC '03, 2003, Vol.2, p.790-796 Vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1299748 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Evolutionary computation Induction motors Linear systems Magnetic flux Parameter estimation Rotors Saturation magnetization Stators Stochastic processes |
title | Parameter identification of induction motors using differential evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20identification%20of%20induction%20motors%20using%20differential%20evolution&rft.btitle=The%202003%20Congress%20on%20Evolutionary%20Computation,%202003.%20CEC%20'03&rft.au=Ursem,%20R.K.&rft.date=2003&rft.volume=2&rft.spage=790&rft.epage=796%20Vol.2&rft.pages=790-796%20Vol.2&rft.isbn=0780378040&rft.isbn_list=9780780378049&rft_id=info:doi/10.1109/CEC.2003.1299748&rft_dat=%3Cieee_6IE%3E1299748%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-3bcdc614b8ce9ab2dedaf3e9f5e76aed2c9b1b3f2081cdcb078df5fd812e96a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1299748&rfr_iscdi=true |