Loading…
Hierarchical parallel scheme for global parameter estimation in systems biology
Summary form only given. We present a sophisticated and efficient parallel scheme for the DIRECT global optimization algorithm of Jones et al. (1993). Although several sequential implementations for this algorithm have been successfully applied to large scale MDO problems, few parallel versions of t...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 42 |
container_title | |
container_volume | |
creator | He, J. Sosonkina, M. Shaffer, C.A. Tyson, J.J. Watson, L.T. Zwolak, J.W. |
description | Summary form only given. We present a sophisticated and efficient parallel scheme for the DIRECT global optimization algorithm of Jones et al. (1993). Although several sequential implementations for this algorithm have been successfully applied to large scale MDO problems, few parallel versions of the DIRECT algorithm have addressed well algorithm characteristics such as a single starting point, an unpredictable workload, and a strong data dependency. These challenges engender many interesting design issues including domain decomposition, data access and management, and workload balancing. A hierarchical parallel scheme has been developed to address these challenges at three levels. Each level is supported by parallel and distributed data structures to access shared data sets, distribute workload, or exchange messages. Parameter estimation problems in systems biology provide an ideal application context for the present work. Global nonlinear parameter estimation results obtained on a 200 node Linux cluster are given for a cell cycle model for frog eggs. |
doi_str_mv | 10.1109/IPDPS.2004.1302958 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1302958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1302958</ieee_id><sourcerecordid>1302958</sourcerecordid><originalsourceid>FETCH-LOGICAL-i648-eed371330bbabd03133d5a61372c07240afd0b913c46ce61dda353a519708b643</originalsourceid><addsrcrecordid>eNotj8tqwzAURAWl0JL6B9qNfsDu1cuyliV9JBBIINkHSb5OVOQ4SN7472uoZzMDB4YZQl4ZVIyBed8ePg_HigPIigngRjUPpDC6AV0bxZng5okUOf_CLCmV1OqZ7DcBk03-GryN9G6TjREjzf6KPdJuSPQSB7egHkdMFPMYejuG4UbDjeYpj9hn6sIQh8v0Qh47GzMWi6_I6fvrtN6Uu_3Pdv2xK0MtmxKxFZoJAc5Z14KYY6tszYTmHjSXYLsWnGHCy9pjzdrWCiWsYkZD42opVuTtvzYg4vme5kFpOi-vxR8YUk4J</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical parallel scheme for global parameter estimation in systems biology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>He, J. ; Sosonkina, M. ; Shaffer, C.A. ; Tyson, J.J. ; Watson, L.T. ; Zwolak, J.W.</creator><creatorcontrib>He, J. ; Sosonkina, M. ; Shaffer, C.A. ; Tyson, J.J. ; Watson, L.T. ; Zwolak, J.W.</creatorcontrib><description>Summary form only given. We present a sophisticated and efficient parallel scheme for the DIRECT global optimization algorithm of Jones et al. (1993). Although several sequential implementations for this algorithm have been successfully applied to large scale MDO problems, few parallel versions of the DIRECT algorithm have addressed well algorithm characteristics such as a single starting point, an unpredictable workload, and a strong data dependency. These challenges engender many interesting design issues including domain decomposition, data access and management, and workload balancing. A hierarchical parallel scheme has been developed to address these challenges at three levels. Each level is supported by parallel and distributed data structures to access shared data sets, distribute workload, or exchange messages. Parameter estimation problems in systems biology provide an ideal application context for the present work. Global nonlinear parameter estimation results obtained on a 200 node Linux cluster are given for a cell cycle model for frog eggs.</description><identifier>ISBN: 9780769521329</identifier><identifier>ISBN: 0769521320</identifier><identifier>DOI: 10.1109/IPDPS.2004.1302958</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Clustering algorithms ; Data structures ; Design optimization ; Large-scale systems ; Load management ; Master-slave ; Mathematical model ; Parameter estimation ; Systems biology</subject><ispartof>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.42</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1302958$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1302958$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Sosonkina, M.</creatorcontrib><creatorcontrib>Shaffer, C.A.</creatorcontrib><creatorcontrib>Tyson, J.J.</creatorcontrib><creatorcontrib>Watson, L.T.</creatorcontrib><creatorcontrib>Zwolak, J.W.</creatorcontrib><title>Hierarchical parallel scheme for global parameter estimation in systems biology</title><title>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</title><addtitle>IPDPS</addtitle><description>Summary form only given. We present a sophisticated and efficient parallel scheme for the DIRECT global optimization algorithm of Jones et al. (1993). Although several sequential implementations for this algorithm have been successfully applied to large scale MDO problems, few parallel versions of the DIRECT algorithm have addressed well algorithm characteristics such as a single starting point, an unpredictable workload, and a strong data dependency. These challenges engender many interesting design issues including domain decomposition, data access and management, and workload balancing. A hierarchical parallel scheme has been developed to address these challenges at three levels. Each level is supported by parallel and distributed data structures to access shared data sets, distribute workload, or exchange messages. Parameter estimation problems in systems biology provide an ideal application context for the present work. Global nonlinear parameter estimation results obtained on a 200 node Linux cluster are given for a cell cycle model for frog eggs.</description><subject>Biological system modeling</subject><subject>Clustering algorithms</subject><subject>Data structures</subject><subject>Design optimization</subject><subject>Large-scale systems</subject><subject>Load management</subject><subject>Master-slave</subject><subject>Mathematical model</subject><subject>Parameter estimation</subject><subject>Systems biology</subject><isbn>9780769521329</isbn><isbn>0769521320</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAURAWl0JL6B9qNfsDu1cuyliV9JBBIINkHSb5OVOQ4SN7472uoZzMDB4YZQl4ZVIyBed8ePg_HigPIigngRjUPpDC6AV0bxZng5okUOf_CLCmV1OqZ7DcBk03-GryN9G6TjREjzf6KPdJuSPQSB7egHkdMFPMYejuG4UbDjeYpj9hn6sIQh8v0Qh47GzMWi6_I6fvrtN6Uu_3Pdv2xK0MtmxKxFZoJAc5Z14KYY6tszYTmHjSXYLsWnGHCy9pjzdrWCiWsYkZD42opVuTtvzYg4vme5kFpOi-vxR8YUk4J</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>He, J.</creator><creator>Sosonkina, M.</creator><creator>Shaffer, C.A.</creator><creator>Tyson, J.J.</creator><creator>Watson, L.T.</creator><creator>Zwolak, J.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Hierarchical parallel scheme for global parameter estimation in systems biology</title><author>He, J. ; Sosonkina, M. ; Shaffer, C.A. ; Tyson, J.J. ; Watson, L.T. ; Zwolak, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i648-eed371330bbabd03133d5a61372c07240afd0b913c46ce61dda353a519708b643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological system modeling</topic><topic>Clustering algorithms</topic><topic>Data structures</topic><topic>Design optimization</topic><topic>Large-scale systems</topic><topic>Load management</topic><topic>Master-slave</topic><topic>Mathematical model</topic><topic>Parameter estimation</topic><topic>Systems biology</topic><toplevel>online_resources</toplevel><creatorcontrib>He, J.</creatorcontrib><creatorcontrib>Sosonkina, M.</creatorcontrib><creatorcontrib>Shaffer, C.A.</creatorcontrib><creatorcontrib>Tyson, J.J.</creatorcontrib><creatorcontrib>Watson, L.T.</creatorcontrib><creatorcontrib>Zwolak, J.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, J.</au><au>Sosonkina, M.</au><au>Shaffer, C.A.</au><au>Tyson, J.J.</au><au>Watson, L.T.</au><au>Zwolak, J.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical parallel scheme for global parameter estimation in systems biology</atitle><btitle>18th International Parallel and Distributed Processing Symposium, 2004. Proceedings</btitle><stitle>IPDPS</stitle><date>2004</date><risdate>2004</risdate><spage>42</spage><pages>42-</pages><isbn>9780769521329</isbn><isbn>0769521320</isbn><abstract>Summary form only given. We present a sophisticated and efficient parallel scheme for the DIRECT global optimization algorithm of Jones et al. (1993). Although several sequential implementations for this algorithm have been successfully applied to large scale MDO problems, few parallel versions of the DIRECT algorithm have addressed well algorithm characteristics such as a single starting point, an unpredictable workload, and a strong data dependency. These challenges engender many interesting design issues including domain decomposition, data access and management, and workload balancing. A hierarchical parallel scheme has been developed to address these challenges at three levels. Each level is supported by parallel and distributed data structures to access shared data sets, distribute workload, or exchange messages. Parameter estimation problems in systems biology provide an ideal application context for the present work. Global nonlinear parameter estimation results obtained on a 200 node Linux cluster are given for a cell cycle model for frog eggs.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2004.1302958</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769521329 |
ispartof | 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, 2004, p.42 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1302958 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Clustering algorithms Data structures Design optimization Large-scale systems Load management Master-slave Mathematical model Parameter estimation Systems biology |
title | Hierarchical parallel scheme for global parameter estimation in systems biology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20parallel%20scheme%20for%20global%20parameter%20estimation%20in%20systems%20biology&rft.btitle=18th%20International%20Parallel%20and%20Distributed%20Processing%20Symposium,%202004.%20Proceedings&rft.au=He,%20J.&rft.date=2004&rft.spage=42&rft.pages=42-&rft.isbn=9780769521329&rft.isbn_list=0769521320&rft_id=info:doi/10.1109/IPDPS.2004.1302958&rft_dat=%3Cieee_6IE%3E1302958%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i648-eed371330bbabd03133d5a61372c07240afd0b913c46ce61dda353a519708b643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1302958&rfr_iscdi=true |