Loading…
An extended framework for evidential reasoning systems
Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's parti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 737 |
container_issue | |
container_start_page | 731 |
container_title | |
container_volume | |
creator | Liu, W. Hong, J. McTear, M.F. |
description | Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems.< > |
doi_str_mv | 10.1109/TAI.1990.130429 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_130429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>130429</ieee_id><sourcerecordid>130429</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-32a3df619d6d15a56ae94c21a00562ff45f7974ee1521c53b8ae89593e3784893</originalsourceid><addsrcrecordid>eNotj0tLAzEUhQMiVGvXgqv8gam5eU3ucig-CoVu6rqkzY1EOxlJBrX_3oF6Nodvc_gOY_cglgACH3fdegmIEymhJV6xW-HAWSmctjO2qPVDTDHGIZgbZrvM6XekHCjwWHxPP0P55HEonL5ToDwmf-KFfB1yyu-8nutIfb1j19GfKi3-e87enp92q9dms31Zr7pNk6CVY6OkVyFawGADGG-sJ9RHCX4SsDJGbWKLrSYCI-Fo1MF5cmhQkWqddqjm7OGym4ho_1VS78t5f3mm_gAMzEL9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An extended framework for evidential reasoning systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu, W. ; Hong, J. ; McTear, M.F.</creator><creatorcontrib>Liu, W. ; Hong, J. ; McTear, M.F.</creatorcontrib><description>Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems.< ></description><identifier>ISBN: 0818620846</identifier><identifier>ISBN: 9780818620843</identifier><identifier>DOI: 10.1109/TAI.1990.130429</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Artificial intelligence ; Bayesian methods ; Expert systems ; Fuzzy sets ; Graphics ; Information systems ; Knowledge based systems ; Uncertainty</subject><ispartof>[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990, p.731-737</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/130429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/130429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Hong, J.</creatorcontrib><creatorcontrib>McTear, M.F.</creatorcontrib><title>An extended framework for evidential reasoning systems</title><title>[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence</title><addtitle>TAI</addtitle><description>Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems.< ></description><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Expert systems</subject><subject>Fuzzy sets</subject><subject>Graphics</subject><subject>Information systems</subject><subject>Knowledge based systems</subject><subject>Uncertainty</subject><isbn>0818620846</isbn><isbn>9780818620843</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1990</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLAzEUhQMiVGvXgqv8gam5eU3ucig-CoVu6rqkzY1EOxlJBrX_3oF6Nodvc_gOY_cglgACH3fdegmIEymhJV6xW-HAWSmctjO2qPVDTDHGIZgbZrvM6XekHCjwWHxPP0P55HEonL5ToDwmf-KFfB1yyu-8nutIfb1j19GfKi3-e87enp92q9dms31Zr7pNk6CVY6OkVyFawGADGG-sJ9RHCX4SsDJGbWKLrSYCI-Fo1MF5cmhQkWqddqjm7OGym4ho_1VS78t5f3mm_gAMzEL9</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Liu, W.</creator><creator>Hong, J.</creator><creator>McTear, M.F.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1990</creationdate><title>An extended framework for evidential reasoning systems</title><author>Liu, W. ; Hong, J. ; McTear, M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-32a3df619d6d15a56ae94c21a00562ff45f7974ee1521c53b8ae89593e3784893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Expert systems</topic><topic>Fuzzy sets</topic><topic>Graphics</topic><topic>Information systems</topic><topic>Knowledge based systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Hong, J.</creatorcontrib><creatorcontrib>McTear, M.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, W.</au><au>Hong, J.</au><au>McTear, M.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An extended framework for evidential reasoning systems</atitle><btitle>[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence</btitle><stitle>TAI</stitle><date>1990</date><risdate>1990</risdate><spage>731</spage><epage>737</epage><pages>731-737</pages><isbn>0818620846</isbn><isbn>9780818620843</isbn><abstract>Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems.< ></abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/TAI.1990.130429</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0818620846 |
ispartof | [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990, p.731-737 |
issn | |
language | eng |
recordid | cdi_ieee_primary_130429 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Bayesian methods Expert systems Fuzzy sets Graphics Information systems Knowledge based systems Uncertainty |
title | An extended framework for evidential reasoning systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20extended%20framework%20for%20evidential%20reasoning%20systems&rft.btitle=%5B1990%5D%20Proceedings%20of%20the%202nd%20International%20IEEE%20Conference%20on%20Tools%20for%20Artificial%20Intelligence&rft.au=Liu,%20W.&rft.date=1990&rft.spage=731&rft.epage=737&rft.pages=731-737&rft.isbn=0818620846&rft.isbn_list=9780818620843&rft_id=info:doi/10.1109/TAI.1990.130429&rft_dat=%3Cieee_6IE%3E130429%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-32a3df619d6d15a56ae94c21a00562ff45f7974ee1521c53b8ae89593e3784893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=130429&rfr_iscdi=true |