Loading…
Optimization in genetically evolved fuzzy cognitive maps supporting decision-making: the limit cycle case
This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) aiming at increasing their reliability by overcoming its weakness appearing in cases of a limit cycle behavior. FCMs use notions borrowed from artificial intelligence and neural networks to combine concepts and cau...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) aiming at increasing their reliability by overcoming its weakness appearing in cases of a limit cycle behavior. FCMs use notions borrowed from artificial intelligence and neural networks to combine concepts and causal relationships, aimed at creating dynamic models that describe a given cognitive setting. The activation level of the nodes participating in an FCM model can be calculated using specific updating equations in a series of iterations. |
---|---|
DOI: | 10.1109/ICTTA.2004.1307788 |