Loading…
Accelerated gradient based optimization using adjoint sensitivities
An electromagnetic feasible adjoint sensitivity technique (EM-FAST) has been proposed recently for use with frequency-domain solvers . It makes the implementation of the adjoint variable approach to design sensitivity analysis straightforward while preserving the accuracy at a level comparable to th...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2004-08, Vol.52 (8), p.2147-2157 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An electromagnetic feasible adjoint sensitivity technique (EM-FAST) has been proposed recently for use with frequency-domain solvers . It makes the implementation of the adjoint variable approach to design sensitivity analysis straightforward while preserving the accuracy at a level comparable to that of the exact sensitivities. The overhead computations associated with the estimation of the sensitivities in addition to the system analysis are due largely to the calculation of the derivatives of the system matrix. Here, we describe the integration of the EM-FAST with two methods for accelerated estimation of these derivatives: the boundary-layer concept and the Broyden update. We show that the Broyden update approach (Broyden-FAST) leads to an algorithm whose efficiency is problem independent and allows the computation of the response and its gradient through a single system analysis with practically no overhead. Both approaches are illustrated through the design of simple antennas using method of moments solvers. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2004.832313 |