Loading…
A novel detection system consisting of a large-area sensor and a multicell Si-pad array operated in spectroscopic mode for X-ray breast imaging
The ability of coherent X-ray scatter to provide the molecular structure of breast tissues could add a new dimension in X-ray breast imaging capable of tracking the molecular structural changes during disease progression and of improving the sensitivity to low-contrast lesions without increasing the...
Saved in:
Published in: | IEEE transactions on nuclear science 2004-08, Vol.51 (4), p.1641-1647 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability of coherent X-ray scatter to provide the molecular structure of breast tissues could add a new dimension in X-ray breast imaging capable of tracking the molecular structural changes during disease progression and of improving the sensitivity to low-contrast lesions without increasing the radiation dose. Work is under way to build a laboratory prototype dual-sensor breast-imaging scanning system, which combines the diagnostic information from both the transmitted primary and the forward scattered X-rays. This required the design and development of a coherent X-ray scatter detection system based on a high-resistivity multielement two-dimensional (2-D) Si-pad array, a multichannel low-noise pulse processing front-end electronics chip, the XA1.3, and a new DAQ system. X-rays in the energy range of 17-45 keV can be detected with a FWHM energy resolution of 1-3 keV. Results on the characterization and optimization of the detector-readout electronics-DAQ system and its performance to measure diffraction signatures of most commonly used breast-equivalent materials of interest are presented. |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2004.832578 |