Loading…

Is entropy suitable to characterize data and signals for cognitive informatics?

This paper provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and con...

Full description

Saved in:
Bibliographic Details
Main Author: Kinsner, W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 21
container_issue
container_start_page 6
container_title
container_volume
creator Kinsner, W.
description This paper provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and contextual) as well as entropy-based metrics should be considered in cognitive informatics. The data and signal transformation processes are defined and discussed in the perceptual framework, followed by various classes of information and entropies suitable for characterization of data, signals and distortion. Other entropies are also described, including the Renyi generalized entropy spectrum, Kolmogorov complexity measure, Kolmogorov-Sinai entropy and Prigogine entropy for evolutionary dynamical systems. Although such entropy-based measures are suitable for many signals, they are not sufficient for scale-invariant (fractal and multifractal) signals without complementary measures.
doi_str_mv 10.1109/COGINF.2004.1327455
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1327455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1327455</ieee_id><sourcerecordid>1327455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-befb88bec516977c6ff61a913a05f1b195315d01f13b6ab1f98167f6ef322e473</originalsourceid><addsrcrecordid>eNotj1FLwzAUhQMiKLO_YC_5A625TZM0TyLF6WBsL_o8btKbGdna0URh_noL7rwcDnwczmFsCaICEPax272ut6uqFqKpQNamUeqGFda0wmirarDC3rEipS8xS1pptLxnu3XiNORpPF94-o4Z3ZF4Hrn_xAl9pin-Eu8xI8eh5ykeBjwmHsaJ-_EwxBx_iMdhzifM0aenB3YbZoKKqy_Yx-rlvXsrN_O67nlTRjAql46Ca1tHXoG2xngdgga0IFGoAA6skqB6AQGk0-gg2Ba0CZqCrGtqjFyw5X9vJKL9eYonnC776235B6GiTsc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Is entropy suitable to characterize data and signals for cognitive informatics?</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kinsner, W.</creator><creatorcontrib>Kinsner, W.</creatorcontrib><description>This paper provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and contextual) as well as entropy-based metrics should be considered in cognitive informatics. The data and signal transformation processes are defined and discussed in the perceptual framework, followed by various classes of information and entropies suitable for characterization of data, signals and distortion. Other entropies are also described, including the Renyi generalized entropy spectrum, Kolmogorov complexity measure, Kolmogorov-Sinai entropy and Prigogine entropy for evolutionary dynamical systems. Although such entropy-based measures are suitable for many signals, they are not sufficient for scale-invariant (fractal and multifractal) signals without complementary measures.</description><identifier>ISBN: 9780769521909</identifier><identifier>ISBN: 0769521908</identifier><identifier>DOI: 10.1109/COGINF.2004.1327455</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological materials ; Biomedical materials ; Biomedical measurements ; Cognition ; Cognitive informatics ; Distortion measurement ; Entropy ; Fractals ; Pollution measurement ; Signal processing</subject><ispartof>Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004, 2004, p.6-21</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1327455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1327455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kinsner, W.</creatorcontrib><title>Is entropy suitable to characterize data and signals for cognitive informatics?</title><title>Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004</title><addtitle>COGINF</addtitle><description>This paper provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and contextual) as well as entropy-based metrics should be considered in cognitive informatics. The data and signal transformation processes are defined and discussed in the perceptual framework, followed by various classes of information and entropies suitable for characterization of data, signals and distortion. Other entropies are also described, including the Renyi generalized entropy spectrum, Kolmogorov complexity measure, Kolmogorov-Sinai entropy and Prigogine entropy for evolutionary dynamical systems. Although such entropy-based measures are suitable for many signals, they are not sufficient for scale-invariant (fractal and multifractal) signals without complementary measures.</description><subject>Biological materials</subject><subject>Biomedical materials</subject><subject>Biomedical measurements</subject><subject>Cognition</subject><subject>Cognitive informatics</subject><subject>Distortion measurement</subject><subject>Entropy</subject><subject>Fractals</subject><subject>Pollution measurement</subject><subject>Signal processing</subject><isbn>9780769521909</isbn><isbn>0769521908</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj1FLwzAUhQMiKLO_YC_5A625TZM0TyLF6WBsL_o8btKbGdna0URh_noL7rwcDnwczmFsCaICEPax272ut6uqFqKpQNamUeqGFda0wmirarDC3rEipS8xS1pptLxnu3XiNORpPF94-o4Z3ZF4Hrn_xAl9pin-Eu8xI8eh5ykeBjwmHsaJ-_EwxBx_iMdhzifM0aenB3YbZoKKqy_Yx-rlvXsrN_O67nlTRjAql46Ca1tHXoG2xngdgga0IFGoAA6skqB6AQGk0-gg2Ba0CZqCrGtqjFyw5X9vJKL9eYonnC776235B6GiTsc</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kinsner, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Is entropy suitable to characterize data and signals for cognitive informatics?</title><author>Kinsner, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-befb88bec516977c6ff61a913a05f1b195315d01f13b6ab1f98167f6ef322e473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological materials</topic><topic>Biomedical materials</topic><topic>Biomedical measurements</topic><topic>Cognition</topic><topic>Cognitive informatics</topic><topic>Distortion measurement</topic><topic>Entropy</topic><topic>Fractals</topic><topic>Pollution measurement</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kinsner, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kinsner, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Is entropy suitable to characterize data and signals for cognitive informatics?</atitle><btitle>Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004</btitle><stitle>COGINF</stitle><date>2004</date><risdate>2004</risdate><spage>6</spage><epage>21</epage><pages>6-21</pages><isbn>9780769521909</isbn><isbn>0769521908</isbn><abstract>This paper provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and contextual) as well as entropy-based metrics should be considered in cognitive informatics. The data and signal transformation processes are defined and discussed in the perceptual framework, followed by various classes of information and entropies suitable for characterization of data, signals and distortion. Other entropies are also described, including the Renyi generalized entropy spectrum, Kolmogorov complexity measure, Kolmogorov-Sinai entropy and Prigogine entropy for evolutionary dynamical systems. Although such entropy-based measures are suitable for many signals, they are not sufficient for scale-invariant (fractal and multifractal) signals without complementary measures.</abstract><pub>IEEE</pub><doi>10.1109/COGINF.2004.1327455</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769521909
ispartof Proceedings of the Third IEEE International Conference on Cognitive Informatics, 2004, 2004, p.6-21
issn
language eng
recordid cdi_ieee_primary_1327455
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological materials
Biomedical materials
Biomedical measurements
Cognition
Cognitive informatics
Distortion measurement
Entropy
Fractals
Pollution measurement
Signal processing
title Is entropy suitable to characterize data and signals for cognitive informatics?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Is%20entropy%20suitable%20to%20characterize%20data%20and%20signals%20for%20cognitive%20informatics?&rft.btitle=Proceedings%20of%20the%20Third%20IEEE%20International%20Conference%20on%20Cognitive%20Informatics,%202004&rft.au=Kinsner,%20W.&rft.date=2004&rft.spage=6&rft.epage=21&rft.pages=6-21&rft.isbn=9780769521909&rft.isbn_list=0769521908&rft_id=info:doi/10.1109/COGINF.2004.1327455&rft_dat=%3Cieee_6IE%3E1327455%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-befb88bec516977c6ff61a913a05f1b195315d01f13b6ab1f98167f6ef322e473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1327455&rfr_iscdi=true