Loading…

A hierarchical evolutionary approach to multi-objective optimization

This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of...

Full description

Saved in:
Bibliographic Details
Main Author: Mumford, C.L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1951 Vol.2
container_issue
container_start_page 1944
container_title
container_volume 2
creator Mumford, C.L.
description This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.
doi_str_mv 10.1109/CEC.2004.1331134
format conference_proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1331134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331134</ieee_id><sourcerecordid>17480114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxAMiKGvvgpdcPHbNy0eTHpe6usKCFz0vSZrQLO2mpNkF_eutVHB48A7zYxgGoXsgawBSPzXbZk0J4WtgDIDxK1TUUpH5mBIg2A0qpulIZnHBgctb9LzBXXBJJ9sFq3vsLrE_5xBPOn1hPY4patvhHPFw7nMoozk6m8PF4TjmMIRv_cveoWuv-8kVf3-FPl-2H82u3L-_vjWbfRkoYblUtaeGKmM8SA5etozXFlpZGdkS0NwAqahVrWXOaFDOEMeEF8QDp5UVNVuhxyV31NNc1id9smE6jCkMc93DnKoIAJ-5h4ULzrl_e9mE_QDQiVcD</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hierarchical evolutionary approach to multi-objective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mumford, C.L.</creator><creatorcontrib>Mumford, C.L.</creatorcontrib><description>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</description><identifier>ISBN: 9780780385153</identifier><identifier>ISBN: 0780385152</identifier><identifier>DOI: 10.1109/CEC.2004.1331134</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Availability ; Computer science ; Computer science; control theory; systems ; Concurrent computing ; Content addressable storage ; Degradation ; Evolutionary computation ; Exact sciences and technology ; Genetics ; Hardware ; Modems ; Scalability</subject><ispartof>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 2004, Vol.2, p.1944-1951 Vol.2</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1331134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17480114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mumford, C.L.</creatorcontrib><title>A hierarchical evolutionary approach to multi-objective optimization</title><title>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)</title><addtitle>CEC</addtitle><description>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Availability</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Concurrent computing</subject><subject>Content addressable storage</subject><subject>Degradation</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Genetics</subject><subject>Hardware</subject><subject>Modems</subject><subject>Scalability</subject><isbn>9780780385153</isbn><isbn>0780385152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1LxDAUxAMiKGvvgpdcPHbNy0eTHpe6usKCFz0vSZrQLO2mpNkF_eutVHB48A7zYxgGoXsgawBSPzXbZk0J4WtgDIDxK1TUUpH5mBIg2A0qpulIZnHBgctb9LzBXXBJJ9sFq3vsLrE_5xBPOn1hPY4patvhHPFw7nMoozk6m8PF4TjmMIRv_cveoWuv-8kVf3-FPl-2H82u3L-_vjWbfRkoYblUtaeGKmM8SA5etozXFlpZGdkS0NwAqahVrWXOaFDOEMeEF8QDp5UVNVuhxyV31NNc1id9smE6jCkMc93DnKoIAJ-5h4ULzrl_e9mE_QDQiVcD</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Mumford, C.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A hierarchical evolutionary approach to multi-objective optimization</title><author>Mumford, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Availability</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Concurrent computing</topic><topic>Content addressable storage</topic><topic>Degradation</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Genetics</topic><topic>Hardware</topic><topic>Modems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Mumford, C.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mumford, C.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hierarchical evolutionary approach to multi-objective optimization</atitle><btitle>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)</btitle><stitle>CEC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1944</spage><epage>1951 Vol.2</epage><pages>1944-1951 Vol.2</pages><isbn>9780780385153</isbn><isbn>0780385152</isbn><abstract>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CEC.2004.1331134</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780385153
ispartof Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 2004, Vol.2, p.1944-1951 Vol.2
issn
language eng
recordid cdi_ieee_primary_1331134
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Availability
Computer science
Computer science
control theory
systems
Concurrent computing
Content addressable storage
Degradation
Evolutionary computation
Exact sciences and technology
Genetics
Hardware
Modems
Scalability
title A hierarchical evolutionary approach to multi-objective optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hierarchical%20evolutionary%20approach%20to%20multi-objective%20optimization&rft.btitle=Proceedings%20of%20the%202004%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20Cat.%20No.04TH8753)&rft.au=Mumford,%20C.L.&rft.date=2004&rft.volume=2&rft.spage=1944&rft.epage=1951%20Vol.2&rft.pages=1944-1951%20Vol.2&rft.isbn=9780780385153&rft.isbn_list=0780385152&rft_id=info:doi/10.1109/CEC.2004.1331134&rft_dat=%3Cpascalfrancis_6IE%3E17480114%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1331134&rfr_iscdi=true