Loading…
A hierarchical evolutionary approach to multi-objective optimization
This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1951 Vol.2 |
container_issue | |
container_start_page | 1944 |
container_title | |
container_volume | 2 |
creator | Mumford, C.L. |
description | This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared. |
doi_str_mv | 10.1109/CEC.2004.1331134 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1331134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331134</ieee_id><sourcerecordid>17480114</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593</originalsourceid><addsrcrecordid>eNpFkM1LxDAUxAMiKGvvgpdcPHbNy0eTHpe6usKCFz0vSZrQLO2mpNkF_eutVHB48A7zYxgGoXsgawBSPzXbZk0J4WtgDIDxK1TUUpH5mBIg2A0qpulIZnHBgctb9LzBXXBJJ9sFq3vsLrE_5xBPOn1hPY4patvhHPFw7nMoozk6m8PF4TjmMIRv_cveoWuv-8kVf3-FPl-2H82u3L-_vjWbfRkoYblUtaeGKmM8SA5etozXFlpZGdkS0NwAqahVrWXOaFDOEMeEF8QDp5UVNVuhxyV31NNc1id9smE6jCkMc93DnKoIAJ-5h4ULzrl_e9mE_QDQiVcD</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hierarchical evolutionary approach to multi-objective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mumford, C.L.</creator><creatorcontrib>Mumford, C.L.</creatorcontrib><description>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</description><identifier>ISBN: 9780780385153</identifier><identifier>ISBN: 0780385152</identifier><identifier>DOI: 10.1109/CEC.2004.1331134</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Availability ; Computer science ; Computer science; control theory; systems ; Concurrent computing ; Content addressable storage ; Degradation ; Evolutionary computation ; Exact sciences and technology ; Genetics ; Hardware ; Modems ; Scalability</subject><ispartof>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 2004, Vol.2, p.1944-1951 Vol.2</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1331134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17480114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mumford, C.L.</creatorcontrib><title>A hierarchical evolutionary approach to multi-objective optimization</title><title>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)</title><addtitle>CEC</addtitle><description>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Availability</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Concurrent computing</subject><subject>Content addressable storage</subject><subject>Degradation</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Genetics</subject><subject>Hardware</subject><subject>Modems</subject><subject>Scalability</subject><isbn>9780780385153</isbn><isbn>0780385152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1LxDAUxAMiKGvvgpdcPHbNy0eTHpe6usKCFz0vSZrQLO2mpNkF_eutVHB48A7zYxgGoXsgawBSPzXbZk0J4WtgDIDxK1TUUpH5mBIg2A0qpulIZnHBgctb9LzBXXBJJ9sFq3vsLrE_5xBPOn1hPY4patvhHPFw7nMoozk6m8PF4TjmMIRv_cveoWuv-8kVf3-FPl-2H82u3L-_vjWbfRkoYblUtaeGKmM8SA5etozXFlpZGdkS0NwAqahVrWXOaFDOEMeEF8QDp5UVNVuhxyV31NNc1id9smE6jCkMc93DnKoIAJ-5h4ULzrl_e9mE_QDQiVcD</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Mumford, C.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>A hierarchical evolutionary approach to multi-objective optimization</title><author>Mumford, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Availability</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Concurrent computing</topic><topic>Content addressable storage</topic><topic>Degradation</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Genetics</topic><topic>Hardware</topic><topic>Modems</topic><topic>Scalability</topic><toplevel>online_resources</toplevel><creatorcontrib>Mumford, C.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mumford, C.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hierarchical evolutionary approach to multi-objective optimization</atitle><btitle>Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)</btitle><stitle>CEC</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1944</spage><epage>1951 Vol.2</epage><pages>1944-1951 Vol.2</pages><isbn>9780780385153</isbn><isbn>0780385152</isbn><abstract>This work describes a hierarchical evolutionary approach to Pareto-based multi-objective optimization. Using the SEAMO algorithm (a simple evolutionary algorithm for multi-objective optimization) as a basis, it demonstrates how it is possible to obtain a better spread of results if subpopulations of various sizes are used in a simple hierarchical framework. Three alternative hierarchical models are tried and the results compared.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CEC.2004.1331134</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780385153 |
ispartof | Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), 2004, Vol.2, p.1944-1951 Vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1331134 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Artificial intelligence Availability Computer science Computer science control theory systems Concurrent computing Content addressable storage Degradation Evolutionary computation Exact sciences and technology Genetics Hardware Modems Scalability |
title | A hierarchical evolutionary approach to multi-objective optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hierarchical%20evolutionary%20approach%20to%20multi-objective%20optimization&rft.btitle=Proceedings%20of%20the%202004%20Congress%20on%20Evolutionary%20Computation%20(IEEE%20Cat.%20No.04TH8753)&rft.au=Mumford,%20C.L.&rft.date=2004&rft.volume=2&rft.spage=1944&rft.epage=1951%20Vol.2&rft.pages=1944-1951%20Vol.2&rft.isbn=9780780385153&rft.isbn_list=0780385152&rft_id=info:doi/10.1109/CEC.2004.1331134&rft_dat=%3Cpascalfrancis_6IE%3E17480114%3C/pascalfrancis_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-89f2b28bbf1741f7d349c1d76b7d01a4b1062c8dc3eba18eb0e35f50f1426c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1331134&rfr_iscdi=true |