Loading…

Vehicle Reidentification using multidetector fusion

Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination dem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2004-09, Vol.5 (3), p.155-164
Main Authors: Sun, C.C., Arr, G.S., Ramachandran, R.P., Ritchie, S.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2004.833770