Loading…
Vehicle Reidentification using multidetector fusion
Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination dem...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2004-09, Vol.5 (3), p.155-164 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3 |
container_end_page | 164 |
container_issue | 3 |
container_start_page | 155 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 5 |
creator | Sun, C.C. Arr, G.S. Ramachandran, R.P. Ritchie, S.G. |
description | Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector. |
doi_str_mv | 10.1109/TITS.2004.833770 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1331386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331386</ieee_id><sourcerecordid>896177116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKt7wU0Q1FXqvDKPpRQfhYKg1e0wGe_olDSpM8nCf--EFAouXN3LPd85cE-WnWM0wxip29Vi9TojCLGZpFQIdJBNcFnKAiHMD4edsEKhEh1nJzGu05WVGE8y-g5f3taQv4D_gKbzzlvT-bbJ--ibz3zT110SOrBdG3KXjm1zmh05U0c4281p9vZwv5o_Fcvnx8X8bllYRmhXGMqUM8g4izAFXnKsBCPAKWWVNMwKsIaRSrLKkZKIpBLlXAWOlhixCug0uxlzt6H97iF2euOjhbo2DbR91FJxLATGPJHX_5JEckWQlAm8_AOu2z406QudVKEolzhBaIRsaGMM4PQ2-I0JPxojPZSth7L1ULYey06Wq12uidbULpjG-rj3cSSF4EP0xch5ANjLlGIqOf0FmUGGiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883793681</pqid></control><display><type>article</type><title>Vehicle Reidentification using multidetector fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</creator><creatorcontrib>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</creatorcontrib><description>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2004.833770</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Cameras ; Communication system traffic control ; Computer science; control theory; systems ; Control theory. Systems ; Density ; Detectors ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Intelligent transportation systems ; Particle measurements ; Pattern recognition. Digital image processing. Computational geometry ; Redundancy ; Road vehicles ; Robotics ; Signal detection ; Signatures ; Sun ; Surveillance ; Traffic engineering ; Traffic flow ; Vehicle detection ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2004-09, Vol.5 (3), p.155-164</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</citedby><cites>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16087761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, C.C.</creatorcontrib><creatorcontrib>Arr, G.S.</creatorcontrib><creatorcontrib>Ramachandran, R.P.</creatorcontrib><creatorcontrib>Ritchie, S.G.</creatorcontrib><title>Vehicle Reidentification using multidetector fusion</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Communication system traffic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Density</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Intelligent transportation systems</subject><subject>Particle measurements</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Redundancy</subject><subject>Road vehicles</subject><subject>Robotics</subject><subject>Signal detection</subject><subject>Signatures</subject><subject>Sun</subject><subject>Surveillance</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhYMoWKt7wU0Q1FXqvDKPpRQfhYKg1e0wGe_olDSpM8nCf--EFAouXN3LPd85cE-WnWM0wxip29Vi9TojCLGZpFQIdJBNcFnKAiHMD4edsEKhEh1nJzGu05WVGE8y-g5f3taQv4D_gKbzzlvT-bbJ--ibz3zT110SOrBdG3KXjm1zmh05U0c4281p9vZwv5o_Fcvnx8X8bllYRmhXGMqUM8g4izAFXnKsBCPAKWWVNMwKsIaRSrLKkZKIpBLlXAWOlhixCug0uxlzt6H97iF2euOjhbo2DbR91FJxLATGPJHX_5JEckWQlAm8_AOu2z406QudVKEolzhBaIRsaGMM4PQ2-I0JPxojPZSth7L1ULYey06Wq12uidbULpjG-rj3cSSF4EP0xch5ANjLlGIqOf0FmUGGiQ</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Sun, C.C.</creator><creator>Arr, G.S.</creator><creator>Ramachandran, R.P.</creator><creator>Ritchie, S.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope></search><sort><creationdate>20040901</creationdate><title>Vehicle Reidentification using multidetector fusion</title><author>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Communication system traffic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Density</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Intelligent transportation systems</topic><topic>Particle measurements</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Redundancy</topic><topic>Road vehicles</topic><topic>Robotics</topic><topic>Signal detection</topic><topic>Signatures</topic><topic>Sun</topic><topic>Surveillance</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, C.C.</creatorcontrib><creatorcontrib>Arr, G.S.</creatorcontrib><creatorcontrib>Ramachandran, R.P.</creatorcontrib><creatorcontrib>Ritchie, S.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, C.C.</au><au>Arr, G.S.</au><au>Ramachandran, R.P.</au><au>Ritchie, S.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Reidentification using multidetector fusion</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>5</volume><issue>3</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TITS.2004.833770</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2004-09, Vol.5 (3), p.155-164 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_1331386 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Applied sciences Artificial intelligence Cameras Communication system traffic control Computer science control theory systems Control theory. Systems Density Detectors Exact sciences and technology Ground, air and sea transportation, marine construction Intelligent transportation systems Particle measurements Pattern recognition. Digital image processing. Computational geometry Redundancy Road vehicles Robotics Signal detection Signatures Sun Surveillance Traffic engineering Traffic flow Vehicle detection Vehicles |
title | Vehicle Reidentification using multidetector fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Reidentification%20using%20multidetector%20fusion&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Sun,%20C.C.&rft.date=2004-09-01&rft.volume=5&rft.issue=3&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2004.833770&rft_dat=%3Cproquest_ieee_%3E896177116%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883793681&rft_id=info:pmid/&rft_ieee_id=1331386&rfr_iscdi=true |