Loading…

Vehicle Reidentification using multidetector fusion

Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination dem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2004-09, Vol.5 (3), p.155-164
Main Authors: Sun, C.C., Arr, G.S., Ramachandran, R.P., Ritchie, S.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3
cites cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3
container_end_page 164
container_issue 3
container_start_page 155
container_title IEEE transactions on intelligent transportation systems
container_volume 5
creator Sun, C.C.
Arr, G.S.
Ramachandran, R.P.
Ritchie, S.G.
description Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.
doi_str_mv 10.1109/TITS.2004.833770
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_1331386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331386</ieee_id><sourcerecordid>896177116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhYMoWKt7wU0Q1FXqvDKPpRQfhYKg1e0wGe_olDSpM8nCf--EFAouXN3LPd85cE-WnWM0wxip29Vi9TojCLGZpFQIdJBNcFnKAiHMD4edsEKhEh1nJzGu05WVGE8y-g5f3taQv4D_gKbzzlvT-bbJ--ibz3zT110SOrBdG3KXjm1zmh05U0c4281p9vZwv5o_Fcvnx8X8bllYRmhXGMqUM8g4izAFXnKsBCPAKWWVNMwKsIaRSrLKkZKIpBLlXAWOlhixCug0uxlzt6H97iF2euOjhbo2DbR91FJxLATGPJHX_5JEckWQlAm8_AOu2z406QudVKEolzhBaIRsaGMM4PQ2-I0JPxojPZSth7L1ULYey06Wq12uidbULpjG-rj3cSSF4EP0xch5ANjLlGIqOf0FmUGGiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883793681</pqid></control><display><type>article</type><title>Vehicle Reidentification using multidetector fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</creator><creatorcontrib>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</creatorcontrib><description>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2004.833770</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Cameras ; Communication system traffic control ; Computer science; control theory; systems ; Control theory. Systems ; Density ; Detectors ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Intelligent transportation systems ; Particle measurements ; Pattern recognition. Digital image processing. Computational geometry ; Redundancy ; Road vehicles ; Robotics ; Signal detection ; Signatures ; Sun ; Surveillance ; Traffic engineering ; Traffic flow ; Vehicle detection ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2004-09, Vol.5 (3), p.155-164</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</citedby><cites>FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16087761$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, C.C.</creatorcontrib><creatorcontrib>Arr, G.S.</creatorcontrib><creatorcontrib>Ramachandran, R.P.</creatorcontrib><creatorcontrib>Ritchie, S.G.</creatorcontrib><title>Vehicle Reidentification using multidetector fusion</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Communication system traffic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Density</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Intelligent transportation systems</subject><subject>Particle measurements</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Redundancy</subject><subject>Road vehicles</subject><subject>Robotics</subject><subject>Signal detection</subject><subject>Signatures</subject><subject>Sun</subject><subject>Surveillance</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhYMoWKt7wU0Q1FXqvDKPpRQfhYKg1e0wGe_olDSpM8nCf--EFAouXN3LPd85cE-WnWM0wxip29Vi9TojCLGZpFQIdJBNcFnKAiHMD4edsEKhEh1nJzGu05WVGE8y-g5f3taQv4D_gKbzzlvT-bbJ--ibz3zT110SOrBdG3KXjm1zmh05U0c4281p9vZwv5o_Fcvnx8X8bllYRmhXGMqUM8g4izAFXnKsBCPAKWWVNMwKsIaRSrLKkZKIpBLlXAWOlhixCug0uxlzt6H97iF2euOjhbo2DbR91FJxLATGPJHX_5JEckWQlAm8_AOu2z406QudVKEolzhBaIRsaGMM4PQ2-I0JPxojPZSth7L1ULYey06Wq12uidbULpjG-rj3cSSF4EP0xch5ANjLlGIqOf0FmUGGiQ</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Sun, C.C.</creator><creator>Arr, G.S.</creator><creator>Ramachandran, R.P.</creator><creator>Ritchie, S.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope></search><sort><creationdate>20040901</creationdate><title>Vehicle Reidentification using multidetector fusion</title><author>Sun, C.C. ; Arr, G.S. ; Ramachandran, R.P. ; Ritchie, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Communication system traffic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Density</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Intelligent transportation systems</topic><topic>Particle measurements</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Redundancy</topic><topic>Road vehicles</topic><topic>Robotics</topic><topic>Signal detection</topic><topic>Signatures</topic><topic>Sun</topic><topic>Surveillance</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, C.C.</creatorcontrib><creatorcontrib>Arr, G.S.</creatorcontrib><creatorcontrib>Ramachandran, R.P.</creatorcontrib><creatorcontrib>Ritchie, S.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, C.C.</au><au>Arr, G.S.</au><au>Ramachandran, R.P.</au><au>Ritchie, S.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Reidentification using multidetector fusion</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2004-09-01</date><risdate>2004</risdate><volume>5</volume><issue>3</issue><spage>155</spage><epage>164</epage><pages>155-164</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Vehicle reidentification is the process of matching vehicles from one point on the roadway (one field of view) to the next. By performing vehicle reidentification, important traffic parameters including travel time, travel time variability, section density, and partial dynamic origin/destination demands can be obtained. Field traffic data were collected in Alton Parkway in Southern California for training and testing of the multidetector vehicle reidentification algorithm. These data consisted of inductive loop signatures of vehicles that traversed two detector stations spanning a section of an arterial and the corresponding video of these signatures. Even though the video collected was not optimized for pattern-recognition purposes, an investigation into the feasibility of fusing inductive vehicle signatures with video for anonymous vehicle reidentification was conducted. The resulting reidentification rate of over 90% shows that this approach merits further investigation. The results also show that the use of detector fusion provides system redundancy and yields slightly better results than the use of a single detector.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TITS.2004.833770</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2004-09, Vol.5 (3), p.155-164
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_1331386
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Applied sciences
Artificial intelligence
Cameras
Communication system traffic control
Computer science
control theory
systems
Control theory. Systems
Density
Detectors
Exact sciences and technology
Ground, air and sea transportation, marine construction
Intelligent transportation systems
Particle measurements
Pattern recognition. Digital image processing. Computational geometry
Redundancy
Road vehicles
Robotics
Signal detection
Signatures
Sun
Surveillance
Traffic engineering
Traffic flow
Vehicle detection
Vehicles
title Vehicle Reidentification using multidetector fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Reidentification%20using%20multidetector%20fusion&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Sun,%20C.C.&rft.date=2004-09-01&rft.volume=5&rft.issue=3&rft.spage=155&rft.epage=164&rft.pages=155-164&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2004.833770&rft_dat=%3Cproquest_ieee_%3E896177116%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-a349fa0afc013e65619742e6334b8a4c7eca42b84bf252719729ffbef35104be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883793681&rft_id=info:pmid/&rft_ieee_id=1331386&rfr_iscdi=true