Loading…

Imputation of missing values in DNA microarray gene expression data

Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares o...

Full description

Saved in:
Bibliographic Details
Main Authors: Hyunsoo Kim, Golub, G.H., Haesun Park
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 573
container_issue
container_start_page 572
container_title
container_volume
creator Hyunsoo Kim
Golub, G.H.
Haesun Park
description Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.
doi_str_mv 10.1109/CSB.2004.1332500
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1332500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1332500</ieee_id><sourcerecordid>1332500</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3</originalsourceid><addsrcrecordid>eNotT8lqwzAUFJRCS-p7oRf9gF1JfrKsY-pugdAekp7Di_wUVOIFySnN39fQzGVgmIVh7F6KQkphH5vNU6GEgEKWpdJCXLHMmlqYymolLZgblqX0LWaABmn0LWtW3XiacApDzwfPu5BS6A_8B48nSjz0_PljOasuDhgjnvmBeuL0O0aajXOmxQnv2LXHY6Lswgv29fqybd7z9efbqlmu8zBPTTkBettqp11bAdiWlCVNHpyR2teVsHvjwHsFTlbGt-RVbQ2W4PZSu1phuWAP_72BiHZjDB3G8-5ytfwDZsxJww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Imputation of missing values in DNA microarray gene expression data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</creator><creatorcontrib>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</creatorcontrib><description>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</description><identifier>ISBN: 9780769521947</identifier><identifier>ISBN: 0769521940</identifier><identifier>DOI: 10.1109/CSB.2004.1332500</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer science ; DNA ; Gene expression ; Image resolution ; Laboratories ; Least squares approximation ; Least squares methods ; Principal component analysis ; Statistical analysis</subject><ispartof>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, 2004, p.572-573</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1332500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1332500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><title>Imputation of missing values in DNA microarray gene expression data</title><title>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004</title><addtitle>CSB</addtitle><description>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</description><subject>Bayesian methods</subject><subject>Computer science</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Image resolution</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Principal component analysis</subject><subject>Statistical analysis</subject><isbn>9780769521947</isbn><isbn>0769521940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lqwzAUFJRCS-p7oRf9gF1JfrKsY-pugdAekp7Di_wUVOIFySnN39fQzGVgmIVh7F6KQkphH5vNU6GEgEKWpdJCXLHMmlqYymolLZgblqX0LWaABmn0LWtW3XiacApDzwfPu5BS6A_8B48nSjz0_PljOasuDhgjnvmBeuL0O0aajXOmxQnv2LXHY6Lswgv29fqybd7z9efbqlmu8zBPTTkBettqp11bAdiWlCVNHpyR2teVsHvjwHsFTlbGt-RVbQ2W4PZSu1phuWAP_72BiHZjDB3G8-5ytfwDZsxJww</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Hyunsoo Kim</creator><creator>Golub, G.H.</creator><creator>Haesun Park</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Imputation of missing values in DNA microarray gene expression data</title><author>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayesian methods</topic><topic>Computer science</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Image resolution</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Principal component analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyunsoo Kim</au><au>Golub, G.H.</au><au>Haesun Park</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Imputation of missing values in DNA microarray gene expression data</atitle><btitle>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004</btitle><stitle>CSB</stitle><date>2004</date><risdate>2004</risdate><spage>572</spage><epage>573</epage><pages>572-573</pages><isbn>9780769521947</isbn><isbn>0769521940</isbn><abstract>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</abstract><pub>IEEE</pub><doi>10.1109/CSB.2004.1332500</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769521947
ispartof Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, 2004, p.572-573
issn
language eng
recordid cdi_ieee_primary_1332500
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computer science
DNA
Gene expression
Image resolution
Laboratories
Least squares approximation
Least squares methods
Principal component analysis
Statistical analysis
title Imputation of missing values in DNA microarray gene expression data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Imputation%20of%20missing%20values%20in%20DNA%20microarray%20gene%20expression%20data&rft.btitle=Proceedings.%202004%20IEEE%20Computational%20Systems%20Bioinformatics%20Conference,%202004.%20CSB%202004&rft.au=Hyunsoo%20Kim&rft.date=2004&rft.spage=572&rft.epage=573&rft.pages=572-573&rft.isbn=9780769521947&rft.isbn_list=0769521940&rft_id=info:doi/10.1109/CSB.2004.1332500&rft_dat=%3Cieee_6IE%3E1332500%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1332500&rfr_iscdi=true