Loading…
Imputation of missing values in DNA microarray gene expression data
Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares o...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 573 |
container_issue | |
container_start_page | 572 |
container_title | |
container_volume | |
creator | Hyunsoo Kim Golub, G.H. Haesun Park |
description | Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis. |
doi_str_mv | 10.1109/CSB.2004.1332500 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1332500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1332500</ieee_id><sourcerecordid>1332500</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3</originalsourceid><addsrcrecordid>eNotT8lqwzAUFJRCS-p7oRf9gF1JfrKsY-pugdAekp7Di_wUVOIFySnN39fQzGVgmIVh7F6KQkphH5vNU6GEgEKWpdJCXLHMmlqYymolLZgblqX0LWaABmn0LWtW3XiacApDzwfPu5BS6A_8B48nSjz0_PljOasuDhgjnvmBeuL0O0aajXOmxQnv2LXHY6Lswgv29fqybd7z9efbqlmu8zBPTTkBettqp11bAdiWlCVNHpyR2teVsHvjwHsFTlbGt-RVbQ2W4PZSu1phuWAP_72BiHZjDB3G8-5ytfwDZsxJww</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Imputation of missing values in DNA microarray gene expression data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</creator><creatorcontrib>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</creatorcontrib><description>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</description><identifier>ISBN: 9780769521947</identifier><identifier>ISBN: 0769521940</identifier><identifier>DOI: 10.1109/CSB.2004.1332500</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer science ; DNA ; Gene expression ; Image resolution ; Laboratories ; Least squares approximation ; Least squares methods ; Principal component analysis ; Statistical analysis</subject><ispartof>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, 2004, p.572-573</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1332500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1332500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><title>Imputation of missing values in DNA microarray gene expression data</title><title>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004</title><addtitle>CSB</addtitle><description>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</description><subject>Bayesian methods</subject><subject>Computer science</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Image resolution</subject><subject>Laboratories</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Principal component analysis</subject><subject>Statistical analysis</subject><isbn>9780769521947</isbn><isbn>0769521940</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lqwzAUFJRCS-p7oRf9gF1JfrKsY-pugdAekp7Di_wUVOIFySnN39fQzGVgmIVh7F6KQkphH5vNU6GEgEKWpdJCXLHMmlqYymolLZgblqX0LWaABmn0LWtW3XiacApDzwfPu5BS6A_8B48nSjz0_PljOasuDhgjnvmBeuL0O0aajXOmxQnv2LXHY6Lswgv29fqybd7z9efbqlmu8zBPTTkBettqp11bAdiWlCVNHpyR2teVsHvjwHsFTlbGt-RVbQ2W4PZSu1phuWAP_72BiHZjDB3G8-5ytfwDZsxJww</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Hyunsoo Kim</creator><creator>Golub, G.H.</creator><creator>Haesun Park</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Imputation of missing values in DNA microarray gene expression data</title><author>Hyunsoo Kim ; Golub, G.H. ; Haesun Park</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bayesian methods</topic><topic>Computer science</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Image resolution</topic><topic>Laboratories</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Principal component analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyunsoo Kim</au><au>Golub, G.H.</au><au>Haesun Park</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Imputation of missing values in DNA microarray gene expression data</atitle><btitle>Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004</btitle><stitle>CSB</stitle><date>2004</date><risdate>2004</risdate><spage>572</spage><epage>573</epage><pages>572-573</pages><isbn>9780769521947</isbn><isbn>0769521940</isbn><abstract>Most multivariate statistical methods for gene expression data require a complete matrix of gene array values. In this paper, an imputation method based on least squares formulation is proposed to estimate missing values. It exploits local similarity structures in the data as well as least squares optimization process. The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. This algorithm showed better performance than the other imputation methods such as k-nearest neighbor imputation and an imputation method based on Bayesian principal component analysis.</abstract><pub>IEEE</pub><doi>10.1109/CSB.2004.1332500</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769521947 |
ispartof | Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004, 2004, p.572-573 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1332500 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Computer science DNA Gene expression Image resolution Laboratories Least squares approximation Least squares methods Principal component analysis Statistical analysis |
title | Imputation of missing values in DNA microarray gene expression data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Imputation%20of%20missing%20values%20in%20DNA%20microarray%20gene%20expression%20data&rft.btitle=Proceedings.%202004%20IEEE%20Computational%20Systems%20Bioinformatics%20Conference,%202004.%20CSB%202004&rft.au=Hyunsoo%20Kim&rft.date=2004&rft.spage=572&rft.epage=573&rft.pages=572-573&rft.isbn=9780769521947&rft.isbn_list=0769521940&rft_id=info:doi/10.1109/CSB.2004.1332500&rft_dat=%3Cieee_6IE%3E1332500%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e4af9d5c5cd6449de29e5ef4c715f8609b7c4ff24c167fdef2897a34cb15c82a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1332500&rfr_iscdi=true |