Loading…

A novel adaptive image enhancement algorithm for face detection

Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analy...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, L., Satoh, S., Sakauchi, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 848 Vol.4
container_issue
container_start_page 843
container_title
container_volume 4
creator Jin, L.
Satoh, S.
Sakauchi, M.
description Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.
doi_str_mv 10.1109/ICPR.2004.1333904
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1333904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1333904</ieee_id><sourcerecordid>1333904</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAcfYFr9AHEzP5B47zwzKynBaqGgiK7LZOZOG8mjJKHg3yvY1dkdzmHsHqFABPe4qd4_CgGgCpRSOlAXLBOlxNwqqy_ZAqxxWqAoxRXLEDTmymi8YYtp-gYQIHWZsacV74cTtdxHf5ybE_Gm83vi1B98H6ijfua-3Q9jMx86noaRJx-IR5opzM3Q37Lr5NuJ7s5csq_182f1mm_fXjbVaps3aPWc64hAEoNw0UdDJgkXsNQxJggJbe2UAVeb2lvtUwJtdBQyGm0V2Wikkkv28O9tiGh3HP8qx5_deVz-AtsHSmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel adaptive image enhancement algorithm for face detection</title><source>IEEE Xplore All Conference Series</source><creator>Jin, L. ; Satoh, S. ; Sakauchi, M.</creator><creatorcontrib>Jin, L. ; Satoh, S. ; Sakauchi, M.</creatorcontrib><description>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1333904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Entropy ; Error analysis ; Face detection ; Histograms ; Image analysis ; Image enhancement ; Information theory ; Motion pictures ; Testing</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.4, p.843-848 Vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1333904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1333904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, L.</creatorcontrib><creatorcontrib>Satoh, S.</creatorcontrib><creatorcontrib>Sakauchi, M.</creatorcontrib><title>A novel adaptive image enhancement algorithm for face detection</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</description><subject>Algorithm design and analysis</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Face detection</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Information theory</subject><subject>Motion pictures</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAcfYFr9AHEzP5B47zwzKynBaqGgiK7LZOZOG8mjJKHg3yvY1dkdzmHsHqFABPe4qd4_CgGgCpRSOlAXLBOlxNwqqy_ZAqxxWqAoxRXLEDTmymi8YYtp-gYQIHWZsacV74cTtdxHf5ybE_Gm83vi1B98H6ijfua-3Q9jMx86noaRJx-IR5opzM3Q37Lr5NuJ7s5csq_182f1mm_fXjbVaps3aPWc64hAEoNw0UdDJgkXsNQxJggJbe2UAVeb2lvtUwJtdBQyGm0V2Wikkkv28O9tiGh3HP8qx5_deVz-AtsHSmQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jin, L.</creator><creator>Satoh, S.</creator><creator>Sakauchi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A novel adaptive image enhancement algorithm for face detection</title><author>Jin, L. ; Satoh, S. ; Sakauchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Face detection</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Information theory</topic><topic>Motion pictures</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, L.</creatorcontrib><creatorcontrib>Satoh, S.</creatorcontrib><creatorcontrib>Sakauchi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, L.</au><au>Satoh, S.</au><au>Sakauchi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel adaptive image enhancement algorithm for face detection</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>843</spage><epage>848 Vol.4</epage><pages>843-848 Vol.4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1333904</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.4, p.843-848 Vol.4
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1333904
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Entropy
Error analysis
Face detection
Histograms
Image analysis
Image enhancement
Information theory
Motion pictures
Testing
title A novel adaptive image enhancement algorithm for face detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20adaptive%20image%20enhancement%20algorithm%20for%20face%20detection&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Jin,%20L.&rft.date=2004&rft.volume=4&rft.spage=843&rft.epage=848%20Vol.4&rft.pages=843-848%20Vol.4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1333904&rft_dat=%3Cieee_CHZPO%3E1333904%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1333904&rfr_iscdi=true