Loading…
A novel adaptive image enhancement algorithm for face detection
Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analy...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 848 Vol.4 |
container_issue | |
container_start_page | 843 |
container_title | |
container_volume | 4 |
creator | Jin, L. Satoh, S. Sakauchi, M. |
description | Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization. |
doi_str_mv | 10.1109/ICPR.2004.1333904 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1333904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1333904</ieee_id><sourcerecordid>1333904</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343</originalsourceid><addsrcrecordid>eNotj8tKw0AUQAcfYFr9AHEzP5B47zwzKynBaqGgiK7LZOZOG8mjJKHg3yvY1dkdzmHsHqFABPe4qd4_CgGgCpRSOlAXLBOlxNwqqy_ZAqxxWqAoxRXLEDTmymi8YYtp-gYQIHWZsacV74cTtdxHf5ybE_Gm83vi1B98H6ijfua-3Q9jMx86noaRJx-IR5opzM3Q37Lr5NuJ7s5csq_182f1mm_fXjbVaps3aPWc64hAEoNw0UdDJgkXsNQxJggJbe2UAVeb2lvtUwJtdBQyGm0V2Wikkkv28O9tiGh3HP8qx5_deVz-AtsHSmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel adaptive image enhancement algorithm for face detection</title><source>IEEE Xplore All Conference Series</source><creator>Jin, L. ; Satoh, S. ; Sakauchi, M.</creator><creatorcontrib>Jin, L. ; Satoh, S. ; Sakauchi, M.</creatorcontrib><description>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1333904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Entropy ; Error analysis ; Face detection ; Histograms ; Image analysis ; Image enhancement ; Information theory ; Motion pictures ; Testing</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.4, p.843-848 Vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1333904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27912,54542,54907,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1333904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, L.</creatorcontrib><creatorcontrib>Satoh, S.</creatorcontrib><creatorcontrib>Sakauchi, M.</creatorcontrib><title>A novel adaptive image enhancement algorithm for face detection</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</description><subject>Algorithm design and analysis</subject><subject>Entropy</subject><subject>Error analysis</subject><subject>Face detection</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image enhancement</subject><subject>Information theory</subject><subject>Motion pictures</subject><subject>Testing</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQAcfYFr9AHEzP5B47zwzKynBaqGgiK7LZOZOG8mjJKHg3yvY1dkdzmHsHqFABPe4qd4_CgGgCpRSOlAXLBOlxNwqqy_ZAqxxWqAoxRXLEDTmymi8YYtp-gYQIHWZsacV74cTtdxHf5ybE_Gm83vi1B98H6ijfua-3Q9jMx86noaRJx-IR5opzM3Q37Lr5NuJ7s5csq_182f1mm_fXjbVaps3aPWc64hAEoNw0UdDJgkXsNQxJggJbe2UAVeb2lvtUwJtdBQyGm0V2Wikkkv28O9tiGh3HP8qx5_deVz-AtsHSmQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jin, L.</creator><creator>Satoh, S.</creator><creator>Sakauchi, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>A novel adaptive image enhancement algorithm for face detection</title><author>Jin, L. ; Satoh, S. ; Sakauchi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Entropy</topic><topic>Error analysis</topic><topic>Face detection</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image enhancement</topic><topic>Information theory</topic><topic>Motion pictures</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, L.</creatorcontrib><creatorcontrib>Satoh, S.</creatorcontrib><creatorcontrib>Sakauchi, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, L.</au><au>Satoh, S.</au><au>Sakauchi, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel adaptive image enhancement algorithm for face detection</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>843</spage><epage>848 Vol.4</epage><pages>843-848 Vol.4</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>Image enhancement techniques are discussed in this paper as a necessary preprocessing step for face detection. First, a measure of the distribution of image information, termed the entropy error rate (EER), is presented on the basis of information theory. Then, by integrating a histogram ridge analysis technique and an optimal intensity transform method that aims to minimize the EER of an enhanced image, a novel adaptive enhancement algorithm is proposed. In a baseline face detection test using the algorithm presented by Viola et al. in (2001), comparison experiments are conducted with the Yale B face dataset and our own movie face dataset. The results demonstrate that image enhancement preprocessing can significantly improve face detection accuracy, and that the adaptive enhancement algorithm performs much better than classical histogram-based enhancement techniques such as linear stretching and histogram equalization.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1333904</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.4, p.843-848 Vol.4 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1333904 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Entropy Error analysis Face detection Histograms Image analysis Image enhancement Information theory Motion pictures Testing |
title | A novel adaptive image enhancement algorithm for face detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20adaptive%20image%20enhancement%20algorithm%20for%20face%20detection&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Jin,%20L.&rft.date=2004&rft.volume=4&rft.spage=843&rft.epage=848%20Vol.4&rft.pages=843-848%20Vol.4&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1333904&rft_dat=%3Cieee_CHZPO%3E1333904%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5d10e31c29dad6e6f29c185ddf0cf17b94609b6ba75aff0565d23d6574e7d6343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1333904&rfr_iscdi=true |