Loading…
Scene text extraction in natural scene images using hierarchical feature combining and verification
We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level var...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 682 Vol.2 |
container_issue | |
container_start_page | 679 |
container_title | |
container_volume | 2 |
creator | Kim, K.C. Byun, H.R. Song, Y.J. Choi, Y.W. Chi, S.Y. Kim, K.K. Chung, Y.K. |
description | We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images. |
doi_str_mv | 10.1109/ICPR.2004.1334350 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334350</ieee_id><sourcerecordid>1334350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMXsK3-APElf2DXXDfZR1m0FgqKl-eSZCdtpE0l2Yr-e7Pah2EYvsNhzkHompKaUtLeLrrnl5oRImrKueCSnKAJ05xWSih5iqZENa1klGl2hiaUSFqJRtILNM35gxBGuNQT5F4dRMADfA-4TDJuCPuIQ8TRDIdktjj_CcLOrCHjQw5xjTcBkkluE1zhHkYhYLff2RBHbGKPvyAFX_jodonOvdlmuDruGXp_uH_rHqvl03zR3S2rQJUcKmW50or5EoEzoa0WTaO8Y4a3VjVOgvLUSKJbJgyxTvS9NaUIJXtgFgD4DN38-4ZyrT5T-Tn9rI7l8F98ElhT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</creator><creatorcontrib>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</creatorcontrib><description>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color ; Computer science ; Data mining ; Graphics ; Image recognition ; Layout ; Roads ; Testing ; Text recognition ; Wavelet transforms</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.679-682 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, K.C.</creatorcontrib><creatorcontrib>Byun, H.R.</creatorcontrib><creatorcontrib>Song, Y.J.</creatorcontrib><creatorcontrib>Choi, Y.W.</creatorcontrib><creatorcontrib>Chi, S.Y.</creatorcontrib><creatorcontrib>Kim, K.K.</creatorcontrib><creatorcontrib>Chung, Y.K.</creatorcontrib><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</description><subject>Color</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Graphics</subject><subject>Image recognition</subject><subject>Layout</subject><subject>Roads</subject><subject>Testing</subject><subject>Text recognition</subject><subject>Wavelet transforms</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFtLAzEQhYMXsK3-APElf2DXXDfZR1m0FgqKl-eSZCdtpE0l2Yr-e7Pah2EYvsNhzkHompKaUtLeLrrnl5oRImrKueCSnKAJ05xWSih5iqZENa1klGl2hiaUSFqJRtILNM35gxBGuNQT5F4dRMADfA-4TDJuCPuIQ8TRDIdktjj_CcLOrCHjQw5xjTcBkkluE1zhHkYhYLff2RBHbGKPvyAFX_jodonOvdlmuDruGXp_uH_rHqvl03zR3S2rQJUcKmW50or5EoEzoa0WTaO8Y4a3VjVOgvLUSKJbJgyxTvS9NaUIJXtgFgD4DN38-4ZyrT5T-Tn9rI7l8F98ElhT</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kim, K.C.</creator><creator>Byun, H.R.</creator><creator>Song, Y.J.</creator><creator>Choi, Y.W.</creator><creator>Chi, S.Y.</creator><creator>Kim, K.K.</creator><creator>Chung, Y.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><author>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Color</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Graphics</topic><topic>Image recognition</topic><topic>Layout</topic><topic>Roads</topic><topic>Testing</topic><topic>Text recognition</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.C.</creatorcontrib><creatorcontrib>Byun, H.R.</creatorcontrib><creatorcontrib>Song, Y.J.</creatorcontrib><creatorcontrib>Choi, Y.W.</creatorcontrib><creatorcontrib>Chi, S.Y.</creatorcontrib><creatorcontrib>Kim, K.K.</creatorcontrib><creatorcontrib>Chung, Y.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, K.C.</au><au>Byun, H.R.</au><au>Song, Y.J.</au><au>Choi, Y.W.</au><au>Chi, S.Y.</au><au>Kim, K.K.</au><au>Chung, Y.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scene text extraction in natural scene images using hierarchical feature combining and verification</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>679</spage><epage>682 Vol.2</epage><pages>679-682 Vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334350</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.679-682 Vol.2 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1334350 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Color Computer science Data mining Graphics Image recognition Layout Roads Testing Text recognition Wavelet transforms |
title | Scene text extraction in natural scene images using hierarchical feature combining and verification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scene%20text%20extraction%20in%20natural%20scene%20images%20using%20hierarchical%20feature%20combining%20and%20verification&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Kim,%20K.C.&rft.date=2004&rft.volume=2&rft.spage=679&rft.epage=682%20Vol.2&rft.pages=679-682%20Vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334350&rft_dat=%3Cieee_6IE%3E1334350%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334350&rfr_iscdi=true |