Loading…

Scene text extraction in natural scene images using hierarchical feature combining and verification

We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level var...

Full description

Saved in:
Bibliographic Details
Main Authors: Kim, K.C., Byun, H.R., Song, Y.J., Choi, Y.W., Chi, S.Y., Kim, K.K., Chung, Y.K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 682 Vol.2
container_issue
container_start_page 679
container_title
container_volume 2
creator Kim, K.C.
Byun, H.R.
Song, Y.J.
Choi, Y.W.
Chi, S.Y.
Kim, K.K.
Chung, Y.K.
description We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.
doi_str_mv 10.1109/ICPR.2004.1334350
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1334350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1334350</ieee_id><sourcerecordid>1334350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMXsK3-APElf2DXXDfZR1m0FgqKl-eSZCdtpE0l2Yr-e7Pah2EYvsNhzkHompKaUtLeLrrnl5oRImrKueCSnKAJ05xWSih5iqZENa1klGl2hiaUSFqJRtILNM35gxBGuNQT5F4dRMADfA-4TDJuCPuIQ8TRDIdktjj_CcLOrCHjQw5xjTcBkkluE1zhHkYhYLff2RBHbGKPvyAFX_jodonOvdlmuDruGXp_uH_rHqvl03zR3S2rQJUcKmW50or5EoEzoa0WTaO8Y4a3VjVOgvLUSKJbJgyxTvS9NaUIJXtgFgD4DN38-4ZyrT5T-Tn9rI7l8F98ElhT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</creator><creatorcontrib>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</creatorcontrib><description>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769521282</identifier><identifier>ISBN: 9780769521282</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2004.1334350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Color ; Computer science ; Data mining ; Graphics ; Image recognition ; Layout ; Roads ; Testing ; Text recognition ; Wavelet transforms</subject><ispartof>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.679-682 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1334350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1334350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, K.C.</creatorcontrib><creatorcontrib>Byun, H.R.</creatorcontrib><creatorcontrib>Song, Y.J.</creatorcontrib><creatorcontrib>Choi, Y.W.</creatorcontrib><creatorcontrib>Chi, S.Y.</creatorcontrib><creatorcontrib>Kim, K.K.</creatorcontrib><creatorcontrib>Chung, Y.K.</creatorcontrib><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><title>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</title><addtitle>ICPR</addtitle><description>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</description><subject>Color</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Graphics</subject><subject>Image recognition</subject><subject>Layout</subject><subject>Roads</subject><subject>Testing</subject><subject>Text recognition</subject><subject>Wavelet transforms</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769521282</isbn><isbn>9780769521282</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFtLAzEQhYMXsK3-APElf2DXXDfZR1m0FgqKl-eSZCdtpE0l2Yr-e7Pah2EYvsNhzkHompKaUtLeLrrnl5oRImrKueCSnKAJ05xWSih5iqZENa1klGl2hiaUSFqJRtILNM35gxBGuNQT5F4dRMADfA-4TDJuCPuIQ8TRDIdktjj_CcLOrCHjQw5xjTcBkkluE1zhHkYhYLff2RBHbGKPvyAFX_jodonOvdlmuDruGXp_uH_rHqvl03zR3S2rQJUcKmW50or5EoEzoa0WTaO8Y4a3VjVOgvLUSKJbJgyxTvS9NaUIJXtgFgD4DN38-4ZyrT5T-Tn9rI7l8F98ElhT</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kim, K.C.</creator><creator>Byun, H.R.</creator><creator>Song, Y.J.</creator><creator>Choi, Y.W.</creator><creator>Chi, S.Y.</creator><creator>Kim, K.K.</creator><creator>Chung, Y.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Scene text extraction in natural scene images using hierarchical feature combining and verification</title><author>Kim, K.C. ; Byun, H.R. ; Song, Y.J. ; Choi, Y.W. ; Chi, S.Y. ; Kim, K.K. ; Chung, Y.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Color</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Graphics</topic><topic>Image recognition</topic><topic>Layout</topic><topic>Roads</topic><topic>Testing</topic><topic>Text recognition</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, K.C.</creatorcontrib><creatorcontrib>Byun, H.R.</creatorcontrib><creatorcontrib>Song, Y.J.</creatorcontrib><creatorcontrib>Choi, Y.W.</creatorcontrib><creatorcontrib>Chi, S.Y.</creatorcontrib><creatorcontrib>Kim, K.K.</creatorcontrib><creatorcontrib>Chung, Y.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, K.C.</au><au>Byun, H.R.</au><au>Song, Y.J.</au><au>Choi, Y.W.</au><au>Chi, S.Y.</au><au>Kim, K.K.</au><au>Chung, Y.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scene text extraction in natural scene images using hierarchical feature combining and verification</atitle><btitle>Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004</btitle><stitle>ICPR</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>679</spage><epage>682 Vol.2</epage><pages>679-682 Vol.2</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769521282</isbn><isbn>9780769521282</isbn><abstract>We propose a method that extracts text regions in natural scene images using low-level image features and that verifies the extracted regions through a high-level text stroke feature. Then the two level features are combined hierarchically. The low-level features are color continuity, gray-level variation and color variance. The color continuity is used since most of the characters in a text region have the same color, and the gray-level variation is used since the text strokes are distinctive to the background in their gray-level values. Also, the color variance is used since the text strokes are distinctive in their colors to the background, and this value is more sensitive than the gray-level variations. As a high level feature, text stroke is examined using multi-resolution wavelet transforms on local image areas and the feature vector is input to a SVM (support vector machine) for verification. We tested the proposed method with various kinds of the natural scene images and confirmed that extraction rates are high even in complex images.</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2004.1334350</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, 2004, Vol.2, p.679-682 Vol.2
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1334350
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Color
Computer science
Data mining
Graphics
Image recognition
Layout
Roads
Testing
Text recognition
Wavelet transforms
title Scene text extraction in natural scene images using hierarchical feature combining and verification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scene%20text%20extraction%20in%20natural%20scene%20images%20using%20hierarchical%20feature%20combining%20and%20verification&rft.btitle=Proceedings%20of%20the%2017th%20International%20Conference%20on%20Pattern%20Recognition,%202004.%20ICPR%202004&rft.au=Kim,%20K.C.&rft.date=2004&rft.volume=2&rft.spage=679&rft.epage=682%20Vol.2&rft.pages=679-682%20Vol.2&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769521282&rft.isbn_list=9780769521282&rft_id=info:doi/10.1109/ICPR.2004.1334350&rft_dat=%3Cieee_6IE%3E1334350%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7b37872f8313248b84667fc2a39b76c5e7f1a508924a0bc4ddba11075de2beee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1334350&rfr_iscdi=true