Loading…

On classification of simulated sensory deficiency

A feedforward, backpropagation neural network is developed for the purpose of classifying balance disorders using simulated sensory deficiency. Balance of the human multi-segmental system requires the integration of sensors with unique internal and external frames of reference. Thus, spatial informa...

Full description

Saved in:
Bibliographic Details
Main Authors: Betker, A.L., Moussavi, Z., Szturm, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1214 Vol.2
container_issue
container_start_page 1211
container_title
container_volume 2
creator Betker, A.L.
Moussavi, Z.
Szturm, T.
description A feedforward, backpropagation neural network is developed for the purpose of classifying balance disorders using simulated sensory deficiency. Balance of the human multi-segmental system requires the integration of sensors with unique internal and external frames of reference. Thus, spatial information is provided by visual, vestibular and somatosensory inputs (Buchanan, J.J. and Horak, F.B., 1999; Szturm, T. and Fallang, B., 1998), loss or deterioration of which can lead to balance disorders. Using the center-of-foot pressure (COP) as a measure of postural control, three groups were classified: no sensory deficiencies; simulated somatosensory deficiency; simulated visual and somatosensory deficiencies. Features were extracted from the second derivative of the COP, i.e., acceleration. The two selected features, with which the network was trained, were the distances from the maximum absolute value of the acceleration to the average RMS value and average energy value, respectively. The results of this study show that only 1 out of 48 cases was misclassified, supporting neural network modeling as a promising method for classifying sensory deficiency.
doi_str_mv 10.1109/CCECE.2004.1345339
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1345339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1345339</ieee_id><sourcerecordid>1345339</sourcerecordid><originalsourceid>FETCH-LOGICAL-i88t-48d4fd9bae710a1fcd973368b6646fcdcbb16bdae3a03f8849ac957100f1b553</originalsourceid><addsrcrecordid>eNotT8lKxEAUbFzAOM4P6CU_kPg6r9ejhLjAwBz0PvQKLZlE0vGQv7fBgYKiqAWKkEcKLaWgn_t-6Ie2A2AtRcYR9RWpOi5FI4GJa7LXUkEBqo4juyEVKAaNlErfkfucv6E0lWAVocepdqPJOcXkzJrmqZ5jndP5dzRr8HUOU56Xrfah-ClMbnsgt9GMOewvvCOfr8NX_94cjm8f_cuhSUqtDVOeRa-tCZKCodF5LRGFskIwUZSzlgrrTUADGJVi2jjNSxYitZzjjjz9r6YQwulnSWezbKfLV_wDBN9Gjg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On classification of simulated sensory deficiency</title><source>IEEE Xplore All Conference Series</source><creator>Betker, A.L. ; Moussavi, Z. ; Szturm, T.</creator><creatorcontrib>Betker, A.L. ; Moussavi, Z. ; Szturm, T.</creatorcontrib><description>A feedforward, backpropagation neural network is developed for the purpose of classifying balance disorders using simulated sensory deficiency. Balance of the human multi-segmental system requires the integration of sensors with unique internal and external frames of reference. Thus, spatial information is provided by visual, vestibular and somatosensory inputs (Buchanan, J.J. and Horak, F.B., 1999; Szturm, T. and Fallang, B., 1998), loss or deterioration of which can lead to balance disorders. Using the center-of-foot pressure (COP) as a measure of postural control, three groups were classified: no sensory deficiencies; simulated somatosensory deficiency; simulated visual and somatosensory deficiencies. Features were extracted from the second derivative of the COP, i.e., acceleration. The two selected features, with which the network was trained, were the distances from the maximum absolute value of the acceleration to the average RMS value and average energy value, respectively. The results of this study show that only 1 out of 48 cases was misclassified, supporting neural network modeling as a promising method for classifying sensory deficiency.</description><identifier>ISSN: 0840-7789</identifier><identifier>ISBN: 9780780382534</identifier><identifier>ISBN: 0780382536</identifier><identifier>EISSN: 2576-7046</identifier><identifier>DOI: 10.1109/CCECE.2004.1345339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Backpropagation ; Eyes ; Force measurement ; Humans ; Medical simulation ; Neural networks ; Pressure control ; Pressure measurement ; Testing</subject><ispartof>Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), 2004, Vol.2, p.1211-1214 Vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1345339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4049,4050,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1345339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Betker, A.L.</creatorcontrib><creatorcontrib>Moussavi, Z.</creatorcontrib><creatorcontrib>Szturm, T.</creatorcontrib><title>On classification of simulated sensory deficiency</title><title>Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513)</title><addtitle>CCECE</addtitle><description>A feedforward, backpropagation neural network is developed for the purpose of classifying balance disorders using simulated sensory deficiency. Balance of the human multi-segmental system requires the integration of sensors with unique internal and external frames of reference. Thus, spatial information is provided by visual, vestibular and somatosensory inputs (Buchanan, J.J. and Horak, F.B., 1999; Szturm, T. and Fallang, B., 1998), loss or deterioration of which can lead to balance disorders. Using the center-of-foot pressure (COP) as a measure of postural control, three groups were classified: no sensory deficiencies; simulated somatosensory deficiency; simulated visual and somatosensory deficiencies. Features were extracted from the second derivative of the COP, i.e., acceleration. The two selected features, with which the network was trained, were the distances from the maximum absolute value of the acceleration to the average RMS value and average energy value, respectively. The results of this study show that only 1 out of 48 cases was misclassified, supporting neural network modeling as a promising method for classifying sensory deficiency.</description><subject>Acceleration</subject><subject>Backpropagation</subject><subject>Eyes</subject><subject>Force measurement</subject><subject>Humans</subject><subject>Medical simulation</subject><subject>Neural networks</subject><subject>Pressure control</subject><subject>Pressure measurement</subject><subject>Testing</subject><issn>0840-7789</issn><issn>2576-7046</issn><isbn>9780780382534</isbn><isbn>0780382536</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8lKxEAUbFzAOM4P6CU_kPg6r9ejhLjAwBz0PvQKLZlE0vGQv7fBgYKiqAWKkEcKLaWgn_t-6Ie2A2AtRcYR9RWpOi5FI4GJa7LXUkEBqo4juyEVKAaNlErfkfucv6E0lWAVocepdqPJOcXkzJrmqZ5jndP5dzRr8HUOU56Xrfah-ClMbnsgt9GMOewvvCOfr8NX_94cjm8f_cuhSUqtDVOeRa-tCZKCodF5LRGFskIwUZSzlgrrTUADGJVi2jjNSxYitZzjjjz9r6YQwulnSWezbKfLV_wDBN9Gjg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Betker, A.L.</creator><creator>Moussavi, Z.</creator><creator>Szturm, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2004</creationdate><title>On classification of simulated sensory deficiency</title><author>Betker, A.L. ; Moussavi, Z. ; Szturm, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i88t-48d4fd9bae710a1fcd973368b6646fcdcbb16bdae3a03f8849ac957100f1b553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acceleration</topic><topic>Backpropagation</topic><topic>Eyes</topic><topic>Force measurement</topic><topic>Humans</topic><topic>Medical simulation</topic><topic>Neural networks</topic><topic>Pressure control</topic><topic>Pressure measurement</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Betker, A.L.</creatorcontrib><creatorcontrib>Moussavi, Z.</creatorcontrib><creatorcontrib>Szturm, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Betker, A.L.</au><au>Moussavi, Z.</au><au>Szturm, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On classification of simulated sensory deficiency</atitle><btitle>Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513)</btitle><stitle>CCECE</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>1211</spage><epage>1214 Vol.2</epage><pages>1211-1214 Vol.2</pages><issn>0840-7789</issn><eissn>2576-7046</eissn><isbn>9780780382534</isbn><isbn>0780382536</isbn><abstract>A feedforward, backpropagation neural network is developed for the purpose of classifying balance disorders using simulated sensory deficiency. Balance of the human multi-segmental system requires the integration of sensors with unique internal and external frames of reference. Thus, spatial information is provided by visual, vestibular and somatosensory inputs (Buchanan, J.J. and Horak, F.B., 1999; Szturm, T. and Fallang, B., 1998), loss or deterioration of which can lead to balance disorders. Using the center-of-foot pressure (COP) as a measure of postural control, three groups were classified: no sensory deficiencies; simulated somatosensory deficiency; simulated visual and somatosensory deficiencies. Features were extracted from the second derivative of the COP, i.e., acceleration. The two selected features, with which the network was trained, were the distances from the maximum absolute value of the acceleration to the average RMS value and average energy value, respectively. The results of this study show that only 1 out of 48 cases was misclassified, supporting neural network modeling as a promising method for classifying sensory deficiency.</abstract><pub>IEEE</pub><doi>10.1109/CCECE.2004.1345339</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0840-7789
ispartof Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513), 2004, Vol.2, p.1211-1214 Vol.2
issn 0840-7789
2576-7046
language eng
recordid cdi_ieee_primary_1345339
source IEEE Xplore All Conference Series
subjects Acceleration
Backpropagation
Eyes
Force measurement
Humans
Medical simulation
Neural networks
Pressure control
Pressure measurement
Testing
title On classification of simulated sensory deficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20classification%20of%20simulated%20sensory%20deficiency&rft.btitle=Canadian%20Conference%20on%20Electrical%20and%20Computer%20Engineering%202004%20(IEEE%20Cat.%20No.04CH37513)&rft.au=Betker,%20A.L.&rft.date=2004&rft.volume=2&rft.spage=1211&rft.epage=1214%20Vol.2&rft.pages=1211-1214%20Vol.2&rft.issn=0840-7789&rft.eissn=2576-7046&rft.isbn=9780780382534&rft.isbn_list=0780382536&rft_id=info:doi/10.1109/CCECE.2004.1345339&rft_dat=%3Cieee_CHZPO%3E1345339%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i88t-48d4fd9bae710a1fcd973368b6646fcdcbb16bdae3a03f8849ac957100f1b553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1345339&rfr_iscdi=true