Loading…
Context-dependent neural nets-structures and learning
A novel approach toward neural networks modeling is presented in the paper. It is unique in the fact that allows nets' weights to change according to changes of some environmental factors even after completing the learning process. The models of context-dependent (cd) neuron, one- and multilaye...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2004-11, Vol.15 (6), p.1367-1377 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel approach toward neural networks modeling is presented in the paper. It is unique in the fact that allows nets' weights to change according to changes of some environmental factors even after completing the learning process. The models of context-dependent (cd) neuron, one- and multilayer feedforward net are presented, with basic learning algorithms and examples of functioning. The Vapnik-Chervonenkis (VC) dimension of a cd neuron is derived, as well as VC dimension of multilayer feedforward nets. Cd nets' properties are discussed and compared with the properties of traditional nets. Possibilities of applications to classification and control problems are also outlined and an example presented. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/TNN.2004.837839 |