Loading…
Nonlinear simulation of the Francis turbine neural network model
Due to the difficulty in describing the nonlinear characteristic of Francis turbine and the complex simulation of the Francis turbine governing system (FTGS), this paper takes advantage of the powerful nonlinear approximate ability of the feed forward neural network to put up the Francis turbine neu...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3191 vol.5 |
container_issue | |
container_start_page | 3188 |
container_title | |
container_volume | 5 |
creator | Jiang Chang Jiang-Sheng Zhong |
description | Due to the difficulty in describing the nonlinear characteristic of Francis turbine and the complex simulation of the Francis turbine governing system (FTGS), this paper takes advantage of the powerful nonlinear approximate ability of the feed forward neural network to put up the Francis turbine neural network model (FTNNM). The Levenberg-Marquardt algorithm is used to train the FTNNM which describes the flow characteristic and the efficiency characteristic. The convergence speed of the offline training is fast and the accuracy of the model is high. The nonlinear model FTNNM and other models consist the nonlinear simulation system under the environment of the SIMULINK of MATLAB. The nonlinear simulation under different operating situations can be implemented in the system. The variability of the different inner parameters of the system and the Francis turbine can be attained quickly and truly. It provides a good base for the research of control policy of the Francis turbine governing system (FTGS). |
doi_str_mv | 10.1109/ICMLC.2004.1378584 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1378584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1378584</ieee_id><sourcerecordid>1378584</sourcerecordid><originalsourceid>FETCH-LOGICAL-i173t-824757064713382c5868d9c2160b1be22b931950b9c5f0bdd6bd99c29772825c3</originalsourceid><addsrcrecordid>eNotj81KxDAYRQMiqOO8gG7yAq1f_ppkpxRHB6pudD0kTYrRtJGkRXx7CzN3cxb3cOEidEOgJgT03b596dqaAvCaMKmE4mfoCqQCpjgweoG2pXzBGqZFQ_Ulun9NUwyTNxmXMC7RzCFNOA14_vR4l83Uh4LnJdvVwZNfsokr5t-Uv_GYnI_X6HwwsfjtiRv0sXt8b5-r7u1p3z50VSCSzZWiXAoJDZeEMUV7oRrldE9JA5ZYT6nVjGgBVvdiAOtcY51eey0lVVT0bINuj7vBe3_4yWE0-e9wOsn-AfVYRvg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear simulation of the Francis turbine neural network model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiang Chang ; Jiang-Sheng Zhong</creator><creatorcontrib>Jiang Chang ; Jiang-Sheng Zhong</creatorcontrib><description>Due to the difficulty in describing the nonlinear characteristic of Francis turbine and the complex simulation of the Francis turbine governing system (FTGS), this paper takes advantage of the powerful nonlinear approximate ability of the feed forward neural network to put up the Francis turbine neural network model (FTNNM). The Levenberg-Marquardt algorithm is used to train the FTNNM which describes the flow characteristic and the efficiency characteristic. The convergence speed of the offline training is fast and the accuracy of the model is high. The nonlinear model FTNNM and other models consist the nonlinear simulation system under the environment of the SIMULINK of MATLAB. The nonlinear simulation under different operating situations can be implemented in the system. The variability of the different inner parameters of the system and the Francis turbine can be attained quickly and truly. It provides a good base for the research of control policy of the Francis turbine governing system (FTGS).</description><identifier>ISBN: 0780384032</identifier><identifier>ISBN: 9780780384033</identifier><identifier>DOI: 10.1109/ICMLC.2004.1378584</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electronic mail ; Equations ; Feedforward neural networks ; Frequency ; Machine learning algorithms ; Neural networks ; Nonlinear dynamical systems ; Nonlinear systems ; Power system modeling ; Turbines</subject><ispartof>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.5, p.3188-3191 vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1378584$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1378584$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang Chang</creatorcontrib><creatorcontrib>Jiang-Sheng Zhong</creatorcontrib><title>Nonlinear simulation of the Francis turbine neural network model</title><title>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</title><addtitle>ICMLC</addtitle><description>Due to the difficulty in describing the nonlinear characteristic of Francis turbine and the complex simulation of the Francis turbine governing system (FTGS), this paper takes advantage of the powerful nonlinear approximate ability of the feed forward neural network to put up the Francis turbine neural network model (FTNNM). The Levenberg-Marquardt algorithm is used to train the FTNNM which describes the flow characteristic and the efficiency characteristic. The convergence speed of the offline training is fast and the accuracy of the model is high. The nonlinear model FTNNM and other models consist the nonlinear simulation system under the environment of the SIMULINK of MATLAB. The nonlinear simulation under different operating situations can be implemented in the system. The variability of the different inner parameters of the system and the Francis turbine can be attained quickly and truly. It provides a good base for the research of control policy of the Francis turbine governing system (FTGS).</description><subject>Electronic mail</subject><subject>Equations</subject><subject>Feedforward neural networks</subject><subject>Frequency</subject><subject>Machine learning algorithms</subject><subject>Neural networks</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Power system modeling</subject><subject>Turbines</subject><isbn>0780384032</isbn><isbn>9780780384033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAYRQMiqOO8gG7yAq1f_ppkpxRHB6pudD0kTYrRtJGkRXx7CzN3cxb3cOEidEOgJgT03b596dqaAvCaMKmE4mfoCqQCpjgweoG2pXzBGqZFQ_Ulun9NUwyTNxmXMC7RzCFNOA14_vR4l83Uh4LnJdvVwZNfsokr5t-Uv_GYnI_X6HwwsfjtiRv0sXt8b5-r7u1p3z50VSCSzZWiXAoJDZeEMUV7oRrldE9JA5ZYT6nVjGgBVvdiAOtcY51eey0lVVT0bINuj7vBe3_4yWE0-e9wOsn-AfVYRvg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jiang Chang</creator><creator>Jiang-Sheng Zhong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Nonlinear simulation of the Francis turbine neural network model</title><author>Jiang Chang ; Jiang-Sheng Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i173t-824757064713382c5868d9c2160b1be22b931950b9c5f0bdd6bd99c29772825c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Electronic mail</topic><topic>Equations</topic><topic>Feedforward neural networks</topic><topic>Frequency</topic><topic>Machine learning algorithms</topic><topic>Neural networks</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Power system modeling</topic><topic>Turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang Chang</creatorcontrib><creatorcontrib>Jiang-Sheng Zhong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang Chang</au><au>Jiang-Sheng Zhong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear simulation of the Francis turbine neural network model</atitle><btitle>Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826)</btitle><stitle>ICMLC</stitle><date>2004</date><risdate>2004</risdate><volume>5</volume><spage>3188</spage><epage>3191 vol.5</epage><pages>3188-3191 vol.5</pages><isbn>0780384032</isbn><isbn>9780780384033</isbn><abstract>Due to the difficulty in describing the nonlinear characteristic of Francis turbine and the complex simulation of the Francis turbine governing system (FTGS), this paper takes advantage of the powerful nonlinear approximate ability of the feed forward neural network to put up the Francis turbine neural network model (FTNNM). The Levenberg-Marquardt algorithm is used to train the FTNNM which describes the flow characteristic and the efficiency characteristic. The convergence speed of the offline training is fast and the accuracy of the model is high. The nonlinear model FTNNM and other models consist the nonlinear simulation system under the environment of the SIMULINK of MATLAB. The nonlinear simulation under different operating situations can be implemented in the system. The variability of the different inner parameters of the system and the Francis turbine can be attained quickly and truly. It provides a good base for the research of control policy of the Francis turbine governing system (FTGS).</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2004.1378584</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780384032 |
ispartof | Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, Vol.5, p.3188-3191 vol.5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1378584 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Electronic mail Equations Feedforward neural networks Frequency Machine learning algorithms Neural networks Nonlinear dynamical systems Nonlinear systems Power system modeling Turbines |
title | Nonlinear simulation of the Francis turbine neural network model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20simulation%20of%20the%20Francis%20turbine%20neural%20network%20model&rft.btitle=Proceedings%20of%202004%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics%20(IEEE%20Cat.%20No.04EX826)&rft.au=Jiang%20Chang&rft.date=2004&rft.volume=5&rft.spage=3188&rft.epage=3191%20vol.5&rft.pages=3188-3191%20vol.5&rft.isbn=0780384032&rft.isbn_list=9780780384033&rft_id=info:doi/10.1109/ICMLC.2004.1378584&rft_dat=%3Cieee_6IE%3E1378584%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i173t-824757064713382c5868d9c2160b1be22b931950b9c5f0bdd6bd99c29772825c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1378584&rfr_iscdi=true |