Loading…

Joint estimation in sensor networks under energy constraints

We consider the problem of optimal power scheduling for the decentralized estimation of a noise-corrupted signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to the fusion center where a final estimate is generated. Based on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin-Jun Xiao, Shuguang Cui, Zhi-Quan Luo, Goldsmith, A.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 271
container_issue
container_start_page 264
container_title
container_volume
creator Jin-Jun Xiao
Shuguang Cui
Zhi-Quan Luo
Goldsmith, A.J.
description We consider the problem of optimal power scheduling for the decentralized estimation of a noise-corrupted signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to the fusion center where a final estimate is generated. Based on the sensor noise levels and channel gains from sensors to the fusion center, optimal quantization levels and transmit power levels at the local sensors can be chosen to minimize the total transmitting power, while ensuring a given mean squared error (MSE) performance. The proposed optimal power scheduling scheme suggests that the sensors with bad channels or poor observation qualities should decrease their quantization resolutions or simply become inactive in order to conserve power. For the remaining active sensors, their optimal quantization and transmit power levels are determined jointly by individual channel gains, local observation noise variance, and the targeted MSE performance. Numerical examples show that up to 60% energy savings is possible when compared with the uniform quantization strategy.
doi_str_mv 10.1109/SAHCN.2004.1381925
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1381925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1381925</ieee_id><sourcerecordid>1381925</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aafd870967f02b2f70962f5555b20f69c6ab3fb84a9e538b2fbf76bfef5426113</originalsourceid><addsrcrecordid>eNotT81KAzEYDIig1r6AXvICu35JNn_gpSxqlaIH9VyS9ovEn0SSiPTt3WLnMnOYGWYIuWDQMwb26nmxHB97DjD0TBhmuTwiZ6ANCKOtYidkXus7TBBWCdCn5Pohx9Qo1ha_XIs50ZhoxVRzoQnbby4flf6kLRaKCcvbjm5yqq24KVXPyXFwnxXnB56R19ubl3HZrZ7u7sfFqotMy9Y5F7ZGg1U6APc87CUPcoLnEJTdKOdF8GZwFqUwk8MHrXzAIAeuGBMzcvnfGxFx_V2mqWW3PhwUf2oMR4E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint estimation in sensor networks under energy constraints</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Jun Xiao ; Shuguang Cui ; Zhi-Quan Luo ; Goldsmith, A.J.</creator><creatorcontrib>Jin-Jun Xiao ; Shuguang Cui ; Zhi-Quan Luo ; Goldsmith, A.J.</creatorcontrib><description>We consider the problem of optimal power scheduling for the decentralized estimation of a noise-corrupted signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to the fusion center where a final estimate is generated. Based on the sensor noise levels and channel gains from sensors to the fusion center, optimal quantization levels and transmit power levels at the local sensors can be chosen to minimize the total transmitting power, while ensuring a given mean squared error (MSE) performance. The proposed optimal power scheduling scheme suggests that the sensors with bad channels or poor observation qualities should decrease their quantization resolutions or simply become inactive in order to conserve power. For the remaining active sensors, their optimal quantization and transmit power levels are determined jointly by individual channel gains, local observation noise variance, and the targeted MSE performance. Numerical examples show that up to 60% energy savings is possible when compared with the uniform quantization strategy.</description><identifier>ISBN: 0780387961</identifier><identifier>ISBN: 9780780387966</identifier><identifier>DOI: 10.1109/SAHCN.2004.1381925</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fusion power generation ; Intelligent networks ; Intelligent sensors ; Noise level ; Performance gain ; Quantization ; Semiconductor device noise ; Sensor fusion ; Sensor phenomena and characterization ; Wireless sensor networks</subject><ispartof>2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, 2004, p.264-271</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1381925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1381925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Jun Xiao</creatorcontrib><creatorcontrib>Shuguang Cui</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><creatorcontrib>Goldsmith, A.J.</creatorcontrib><title>Joint estimation in sensor networks under energy constraints</title><title>2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004</title><addtitle>SAHCN</addtitle><description>We consider the problem of optimal power scheduling for the decentralized estimation of a noise-corrupted signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to the fusion center where a final estimate is generated. Based on the sensor noise levels and channel gains from sensors to the fusion center, optimal quantization levels and transmit power levels at the local sensors can be chosen to minimize the total transmitting power, while ensuring a given mean squared error (MSE) performance. The proposed optimal power scheduling scheme suggests that the sensors with bad channels or poor observation qualities should decrease their quantization resolutions or simply become inactive in order to conserve power. For the remaining active sensors, their optimal quantization and transmit power levels are determined jointly by individual channel gains, local observation noise variance, and the targeted MSE performance. Numerical examples show that up to 60% energy savings is possible when compared with the uniform quantization strategy.</description><subject>Fusion power generation</subject><subject>Intelligent networks</subject><subject>Intelligent sensors</subject><subject>Noise level</subject><subject>Performance gain</subject><subject>Quantization</subject><subject>Semiconductor device noise</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Wireless sensor networks</subject><isbn>0780387961</isbn><isbn>9780780387966</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT81KAzEYDIig1r6AXvICu35JNn_gpSxqlaIH9VyS9ovEn0SSiPTt3WLnMnOYGWYIuWDQMwb26nmxHB97DjD0TBhmuTwiZ6ANCKOtYidkXus7TBBWCdCn5Pohx9Qo1ha_XIs50ZhoxVRzoQnbby4flf6kLRaKCcvbjm5yqq24KVXPyXFwnxXnB56R19ubl3HZrZ7u7sfFqotMy9Y5F7ZGg1U6APc87CUPcoLnEJTdKOdF8GZwFqUwk8MHrXzAIAeuGBMzcvnfGxFx_V2mqWW3PhwUf2oMR4E</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Jin-Jun Xiao</creator><creator>Shuguang Cui</creator><creator>Zhi-Quan Luo</creator><creator>Goldsmith, A.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Joint estimation in sensor networks under energy constraints</title><author>Jin-Jun Xiao ; Shuguang Cui ; Zhi-Quan Luo ; Goldsmith, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aafd870967f02b2f70962f5555b20f69c6ab3fb84a9e538b2fbf76bfef5426113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Fusion power generation</topic><topic>Intelligent networks</topic><topic>Intelligent sensors</topic><topic>Noise level</topic><topic>Performance gain</topic><topic>Quantization</topic><topic>Semiconductor device noise</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Jun Xiao</creatorcontrib><creatorcontrib>Shuguang Cui</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><creatorcontrib>Goldsmith, A.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Jun Xiao</au><au>Shuguang Cui</au><au>Zhi-Quan Luo</au><au>Goldsmith, A.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint estimation in sensor networks under energy constraints</atitle><btitle>2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004</btitle><stitle>SAHCN</stitle><date>2004</date><risdate>2004</risdate><spage>264</spage><epage>271</epage><pages>264-271</pages><isbn>0780387961</isbn><isbn>9780780387966</isbn><abstract>We consider the problem of optimal power scheduling for the decentralized estimation of a noise-corrupted signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to the fusion center where a final estimate is generated. Based on the sensor noise levels and channel gains from sensors to the fusion center, optimal quantization levels and transmit power levels at the local sensors can be chosen to minimize the total transmitting power, while ensuring a given mean squared error (MSE) performance. The proposed optimal power scheduling scheme suggests that the sensors with bad channels or poor observation qualities should decrease their quantization resolutions or simply become inactive in order to conserve power. For the remaining active sensors, their optimal quantization and transmit power levels are determined jointly by individual channel gains, local observation noise variance, and the targeted MSE performance. Numerical examples show that up to 60% energy savings is possible when compared with the uniform quantization strategy.</abstract><pub>IEEE</pub><doi>10.1109/SAHCN.2004.1381925</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780387961
ispartof 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, 2004, p.264-271
issn
language eng
recordid cdi_ieee_primary_1381925
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fusion power generation
Intelligent networks
Intelligent sensors
Noise level
Performance gain
Quantization
Semiconductor device noise
Sensor fusion
Sensor phenomena and characterization
Wireless sensor networks
title Joint estimation in sensor networks under energy constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20estimation%20in%20sensor%20networks%20under%20energy%20constraints&rft.btitle=2004%20First%20Annual%20IEEE%20Communications%20Society%20Conference%20on%20Sensor%20and%20Ad%20Hoc%20Communications%20and%20Networks,%202004.%20IEEE%20SECON%202004&rft.au=Jin-Jun%20Xiao&rft.date=2004&rft.spage=264&rft.epage=271&rft.pages=264-271&rft.isbn=0780387961&rft.isbn_list=9780780387966&rft_id=info:doi/10.1109/SAHCN.2004.1381925&rft_dat=%3Cieee_6IE%3E1381925%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-aafd870967f02b2f70962f5555b20f69c6ab3fb84a9e538b2fbf76bfef5426113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1381925&rfr_iscdi=true