Loading…

On the optimality of bit detection of certain digital modulations

In this paper, we study the optimality of bit detection for coherent M-ary phase-shift keying (PSK) and M-ary quadrature amplitude modulation (QAM), and noncoherent M-ary frequency-shift keying (FSK) signal sets. For M-PSK and M-QAM signal constellations, we employ Gray mapping, consider 8-PSK and 1...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2005-02, Vol.53 (2), p.299-307
Main Authors: Simon, M.K., Annavajjala, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the optimality of bit detection for coherent M-ary phase-shift keying (PSK) and M-ary quadrature amplitude modulation (QAM), and noncoherent M-ary frequency-shift keying (FSK) signal sets. For M-PSK and M-QAM signal constellations, we employ Gray mapping, consider 8-PSK and 16-QAM signal sets as representative of the general results, and derive the log-likelihood ratio (LLR) for each bit forming the symbol. Using the LLRs, we derive the average bit-error probability (BEP) for the individual bits, and show that the decision regions and the corresponding average BEP for the case of M-PSK coincide with those obtained with the optimal symbol-based detector, whereas, in general, this is not the case for both M-QAM and M-FSK.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2004.841959