Loading…
Globally optimal classification and pairing of human chromosomes
We investigate globally optimal algorithms for automated classification and pairing of human chromosomes. Even in cases where the cell data are incomplete as often encountered in practice, we can still formulate the problem as a transportation problem, and hence find the globally optimal solution in...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2792 |
container_issue | |
container_start_page | 2789 |
container_title | |
container_volume | 1 |
creator | Xiaolin Wu Biyani, P. Dumitrescu, S. Qiang Wu |
description | We investigate globally optimal algorithms for automated classification and pairing of human chromosomes. Even in cases where the cell data are incomplete as often encountered in practice, we can still formulate the problem as a transportation problem, and hence find the globally optimal solution in polynomial time. In addition, we propose a technique of homologue pairing via maximum-weight graph matching. It obtains the globally optimal solution by forming all homologue pairs simultaneously under a maximum likelihood criterion, rather than finding one pair at a time as in existing heuristic algorithms. After the optimal homologue pairing, chromosome classification can also be done by maximum-weight graph matching. This new graph theoretical approach to chromosome pairing and classification is more robust than the transportation algorithm, because many attributes of a chromosome have less variations within a cell than between different cells. |
doi_str_mv | 10.1109/IEMBS.2004.1403797 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1403797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1403797</ieee_id><sourcerecordid>1403797</sourcerecordid><originalsourceid>FETCH-ieee_primary_14037973</originalsourceid><addsrcrecordid>eNp9jrsKwjAYhQMieOsL6JIXsP4xhTabKPUydNK9_NbURnIpSR369nbo7FkOHwc-DiFrBjFjIHa3vDje4z1AErMEeCrSCVlAmgHPEi74jEQhfGAIFwNnc3K4aPdErXvq2k4Z1LTSGIKqVYWdcpaifdEWlVf2TV1Nm69BS6vGO-OCMzKsyLRGHWQ09pJszvnjdN0qKWXZ-sHp-3I8w_-vPyv4Oa4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Globally optimal classification and pairing of human chromosomes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaolin Wu ; Biyani, P. ; Dumitrescu, S. ; Qiang Wu</creator><creatorcontrib>Xiaolin Wu ; Biyani, P. ; Dumitrescu, S. ; Qiang Wu</creatorcontrib><description>We investigate globally optimal algorithms for automated classification and pairing of human chromosomes. Even in cases where the cell data are incomplete as often encountered in practice, we can still formulate the problem as a transportation problem, and hence find the globally optimal solution in polynomial time. In addition, we propose a technique of homologue pairing via maximum-weight graph matching. It obtains the globally optimal solution by forming all homologue pairs simultaneously under a maximum likelihood criterion, rather than finding one pair at a time as in existing heuristic algorithms. After the optimal homologue pairing, chromosome classification can also be done by maximum-weight graph matching. This new graph theoretical approach to chromosome pairing and classification is more robust than the transportation algorithm, because many attributes of a chromosome have less variations within a cell than between different cells.</description><identifier>ISBN: 0780384393</identifier><identifier>ISBN: 9780780384392</identifier><identifier>DOI: 10.1109/IEMBS.2004.1403797</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Cells (biology) ; Classification algorithms ; Genetics ; Heuristic algorithms ; Humans ; Neural networks ; Polynomials ; Robustness ; Transportation</subject><ispartof>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, Vol.1, p.2789-2792</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1403797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1403797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaolin Wu</creatorcontrib><creatorcontrib>Biyani, P.</creatorcontrib><creatorcontrib>Dumitrescu, S.</creatorcontrib><creatorcontrib>Qiang Wu</creatorcontrib><title>Globally optimal classification and pairing of human chromosomes</title><title>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>We investigate globally optimal algorithms for automated classification and pairing of human chromosomes. Even in cases where the cell data are incomplete as often encountered in practice, we can still formulate the problem as a transportation problem, and hence find the globally optimal solution in polynomial time. In addition, we propose a technique of homologue pairing via maximum-weight graph matching. It obtains the globally optimal solution by forming all homologue pairs simultaneously under a maximum likelihood criterion, rather than finding one pair at a time as in existing heuristic algorithms. After the optimal homologue pairing, chromosome classification can also be done by maximum-weight graph matching. This new graph theoretical approach to chromosome pairing and classification is more robust than the transportation algorithm, because many attributes of a chromosome have less variations within a cell than between different cells.</description><subject>Biological cells</subject><subject>Cells (biology)</subject><subject>Classification algorithms</subject><subject>Genetics</subject><subject>Heuristic algorithms</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Robustness</subject><subject>Transportation</subject><isbn>0780384393</isbn><isbn>9780780384392</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jrsKwjAYhQMieOsL6JIXsP4xhTabKPUydNK9_NbURnIpSR369nbo7FkOHwc-DiFrBjFjIHa3vDje4z1AErMEeCrSCVlAmgHPEi74jEQhfGAIFwNnc3K4aPdErXvq2k4Z1LTSGIKqVYWdcpaifdEWlVf2TV1Nm69BS6vGO-OCMzKsyLRGHWQ09pJszvnjdN0qKWXZ-sHp-3I8w_-vPyv4Oa4</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Xiaolin Wu</creator><creator>Biyani, P.</creator><creator>Dumitrescu, S.</creator><creator>Qiang Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2004</creationdate><title>Globally optimal classification and pairing of human chromosomes</title><author>Xiaolin Wu ; Biyani, P. ; Dumitrescu, S. ; Qiang Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_14037973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological cells</topic><topic>Cells (biology)</topic><topic>Classification algorithms</topic><topic>Genetics</topic><topic>Heuristic algorithms</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Robustness</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaolin Wu</creatorcontrib><creatorcontrib>Biyani, P.</creatorcontrib><creatorcontrib>Dumitrescu, S.</creatorcontrib><creatorcontrib>Qiang Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaolin Wu</au><au>Biyani, P.</au><au>Dumitrescu, S.</au><au>Qiang Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Globally optimal classification and pairing of human chromosomes</atitle><btitle>The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>2789</spage><epage>2792</epage><pages>2789-2792</pages><isbn>0780384393</isbn><isbn>9780780384392</isbn><abstract>We investigate globally optimal algorithms for automated classification and pairing of human chromosomes. Even in cases where the cell data are incomplete as often encountered in practice, we can still formulate the problem as a transportation problem, and hence find the globally optimal solution in polynomial time. In addition, we propose a technique of homologue pairing via maximum-weight graph matching. It obtains the globally optimal solution by forming all homologue pairs simultaneously under a maximum likelihood criterion, rather than finding one pair at a time as in existing heuristic algorithms. After the optimal homologue pairing, chromosome classification can also be done by maximum-weight graph matching. This new graph theoretical approach to chromosome pairing and classification is more robust than the transportation algorithm, because many attributes of a chromosome have less variations within a cell than between different cells.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2004.1403797</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780384393 |
ispartof | The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, Vol.1, p.2789-2792 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1403797 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Cells (biology) Classification algorithms Genetics Heuristic algorithms Humans Neural networks Polynomials Robustness Transportation |
title | Globally optimal classification and pairing of human chromosomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Globally%20optimal%20classification%20and%20pairing%20of%20human%20chromosomes&rft.btitle=The%2026th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Xiaolin%20Wu&rft.date=2004&rft.volume=1&rft.spage=2789&rft.epage=2792&rft.pages=2789-2792&rft.isbn=0780384393&rft.isbn_list=9780780384392&rft_id=info:doi/10.1109/IEMBS.2004.1403797&rft_dat=%3Cieee_6IE%3E1403797%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_14037973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1403797&rfr_iscdi=true |