Loading…

A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface

An asynchronous brain computer interface (BCI) continuously monitors the brain signals and is activated only when a user intends control. Initial results from an asynchronous system, the LF-ASD, designed by our group have shown promise, but the reported error rates are still high for most practical...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatourechi, M., Bashashati, A., Ward, R.K., Birch, G.E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page v/348 Vol. 5
container_issue
container_start_page v/345
container_title
container_volume 5
creator Fatourechi, M.
Bashashati, A.
Ward, R.K.
Birch, G.E.
description An asynchronous brain computer interface (BCI) continuously monitors the brain signals and is activated only when a user intends control. Initial results from an asynchronous system, the LF-ASD, designed by our group have shown promise, but the reported error rates are still high for most practical applications. To improve its performance, we propose user customization. Since energy normalization of all channels' signals is shown to significantly improve the performance of the system, we choose to customize the parameters related to this normalization. We apply a hybrid genetic algorithm (a genetic algorithm followed by a local search) to customize the size of the energy normalization windows. This is shown to significantly improve the results. For a fixed false positive rate of 2%, the improvement in the true positive rate was raised from 65.7% to 76.9% in one subject and from 53.1% to 63.3% for another subject.
doi_str_mv 10.1109/ICASSP.2005.1416311
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1416311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1416311</ieee_id><sourcerecordid>1416311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e17d0307b7b84057d2032c58abffb338ca274c4b732c456e96e414a2358c1aaf3</originalsourceid><addsrcrecordid>eNotkN1qAjEQhUN_oGJ9Am_yAmszSXaTXIqttbDQgl70TpI4cVPcH-K24Ns3tB6GOcwHMzCHkDmwBQAzT2-r5Xb7seCMlQuQUAmAGzLhQpkCDPu8JTOjNMsltFYS7sgESs6KCqR5ILPz-YtlVVypSk5Is6TNxaV4oEfscIye2tOxT3FsWmqHIfXWNzT0icY2Dz-xO9KxQTpgyrC1nUfahz9Ur4vl9pm6ZGNHfd8O3yPmtS73YD0-kvtgT2ecXX1KduuX3WpT1O-v-aO6iIaNBYI6MMGUU05LVqoDZ4L7UlsXghNCe8uV9NKpTGVZoalQgrRclNqDtUFMyfz_bETE_ZBia9Nlf41J_ALgqFqL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface</title><source>IEEE Xplore All Conference Series</source><creator>Fatourechi, M. ; Bashashati, A. ; Ward, R.K. ; Birch, G.E.</creator><creatorcontrib>Fatourechi, M. ; Bashashati, A. ; Ward, R.K. ; Birch, G.E.</creatorcontrib><description>An asynchronous brain computer interface (BCI) continuously monitors the brain signals and is activated only when a user intends control. Initial results from an asynchronous system, the LF-ASD, designed by our group have shown promise, but the reported error rates are still high for most practical applications. To improve its performance, we propose user customization. Since energy normalization of all channels' signals is shown to significantly improve the performance of the system, we choose to customize the parameters related to this normalization. We apply a hybrid genetic algorithm (a genetic algorithm followed by a local search) to customize the size of the energy normalization windows. This is shown to significantly improve the results. For a fixed false positive rate of 2%, the improvement in the true positive rate was raised from 65.7% to 76.9% in one subject and from 53.1% to 63.3% for another subject.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780388741</identifier><identifier>ISBN: 0780388747</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2005.1416311</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces ; Computer displays ; Computer interfaces ; Control systems ; Error analysis ; Feature extraction ; Genetic algorithms ; Search methods ; Space exploration ; Switches</subject><ispartof>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.5, p.v/345-v/348 Vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1416311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1416311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fatourechi, M.</creatorcontrib><creatorcontrib>Bashashati, A.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><creatorcontrib>Birch, G.E.</creatorcontrib><title>A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface</title><title>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</title><addtitle>ICASSP</addtitle><description>An asynchronous brain computer interface (BCI) continuously monitors the brain signals and is activated only when a user intends control. Initial results from an asynchronous system, the LF-ASD, designed by our group have shown promise, but the reported error rates are still high for most practical applications. To improve its performance, we propose user customization. Since energy normalization of all channels' signals is shown to significantly improve the performance of the system, we choose to customize the parameters related to this normalization. We apply a hybrid genetic algorithm (a genetic algorithm followed by a local search) to customize the size of the energy normalization windows. This is shown to significantly improve the results. For a fixed false positive rate of 2%, the improvement in the true positive rate was raised from 65.7% to 76.9% in one subject and from 53.1% to 63.3% for another subject.</description><subject>Brain computer interfaces</subject><subject>Computer displays</subject><subject>Computer interfaces</subject><subject>Control systems</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Genetic algorithms</subject><subject>Search methods</subject><subject>Space exploration</subject><subject>Switches</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780388741</isbn><isbn>0780388747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1qAjEQhUN_oGJ9Am_yAmszSXaTXIqttbDQgl70TpI4cVPcH-K24Ns3tB6GOcwHMzCHkDmwBQAzT2-r5Xb7seCMlQuQUAmAGzLhQpkCDPu8JTOjNMsltFYS7sgESs6KCqR5ILPz-YtlVVypSk5Is6TNxaV4oEfscIye2tOxT3FsWmqHIfXWNzT0icY2Dz-xO9KxQTpgyrC1nUfahz9Ur4vl9pm6ZGNHfd8O3yPmtS73YD0-kvtgT2ecXX1KduuX3WpT1O-v-aO6iIaNBYI6MMGUU05LVqoDZ4L7UlsXghNCe8uV9NKpTGVZoalQgrRclNqDtUFMyfz_bETE_ZBia9Nlf41J_ALgqFqL</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fatourechi, M.</creator><creator>Bashashati, A.</creator><creator>Ward, R.K.</creator><creator>Birch, G.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface</title><author>Fatourechi, M. ; Bashashati, A. ; Ward, R.K. ; Birch, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e17d0307b7b84057d2032c58abffb338ca274c4b732c456e96e414a2358c1aaf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Brain computer interfaces</topic><topic>Computer displays</topic><topic>Computer interfaces</topic><topic>Control systems</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Genetic algorithms</topic><topic>Search methods</topic><topic>Space exploration</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Fatourechi, M.</creatorcontrib><creatorcontrib>Bashashati, A.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><creatorcontrib>Birch, G.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fatourechi, M.</au><au>Bashashati, A.</au><au>Ward, R.K.</au><au>Birch, G.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface</atitle><btitle>Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005</btitle><stitle>ICASSP</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>v/345</spage><epage>v/348 Vol. 5</epage><pages>v/345-v/348 Vol. 5</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780388741</isbn><isbn>0780388747</isbn><abstract>An asynchronous brain computer interface (BCI) continuously monitors the brain signals and is activated only when a user intends control. Initial results from an asynchronous system, the LF-ASD, designed by our group have shown promise, but the reported error rates are still high for most practical applications. To improve its performance, we propose user customization. Since energy normalization of all channels' signals is shown to significantly improve the performance of the system, we choose to customize the parameters related to this normalization. We apply a hybrid genetic algorithm (a genetic algorithm followed by a local search) to customize the size of the energy normalization windows. This is shown to significantly improve the results. For a fixed false positive rate of 2%, the improvement in the true positive rate was raised from 65.7% to 76.9% in one subject and from 53.1% to 63.3% for another subject.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2005.1416311</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, 2005, Vol.5, p.v/345-v/348 Vol. 5
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1416311
source IEEE Xplore All Conference Series
subjects Brain computer interfaces
Computer displays
Computer interfaces
Control systems
Error analysis
Feature extraction
Genetic algorithms
Search methods
Space exploration
Switches
title A hybrid genetic algorithm approach for improving the performance of the LF-ASD brain computer interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20genetic%20algorithm%20approach%20for%20improving%20the%20performance%20of%20the%20LF-ASD%20brain%20computer%20interface&rft.btitle=Proceedings.%20(ICASSP%20'05).%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing,%202005&rft.au=Fatourechi,%20M.&rft.date=2005&rft.volume=5&rft.spage=v/345&rft.epage=v/348%20Vol.%205&rft.pages=v/345-v/348%20Vol.%205&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780388741&rft.isbn_list=0780388747&rft_id=info:doi/10.1109/ICASSP.2005.1416311&rft_dat=%3Cieee_CHZPO%3E1416311%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e17d0307b7b84057d2032c58abffb338ca274c4b732c456e96e414a2358c1aaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1416311&rfr_iscdi=true